首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

In the present work, the mechanical interfacial properties of carbon fibre (CF) reinforced polyarylacetylene (PAA) resin composites were modified through the surface oxidation treatment of carbon fibres by ozone. Both X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy showed that oxidation treatment could increase the amount of elemental oxygen on the fibre surface markedly by introducing more oxygen groups. Atomic force microscopy (AFM) images indicated that weak surface regions of fibres had been etched and removed, and the degree of fibre surface roughness was increased. The interlaminar shear strength (ILSS) and the interfacial shear strength (IFSS) of CF/PAA composites were both improved notably (no less than 50%). It could be concluded that an improvement of fibre surface chemical activity, better wettability of resin on the carbon fibre surface, and stronger mechanical joining between fibres and resin all resulted in the modification of interfacial properties of carbon fibre reinforced PAA composites. The influences of temperature, ozone concentration, and treatment time on the oxidation results were studied, and optimal treatment parameters determined.  相似文献   

2.
An oxygen-plasma treatment of carbon fibre surface in three-directional orthogonal fabric preforms was investigated in this paper. The effects of this treatment on the surface wettability and chemical components of the fibres in both the interior and surface regions of the fabrics were analyzed by using dynamic capillary method and X-ray photoelectron spectroscopy (XPS), respectively. A microdebonding method was employed to determine the uniformity of interfacial shear strength between the fibre and matrix in different regions of the carbon fabric-phenolic composites, and the flexural strength was also tested to evaluate the effects of the treatment. The results indicated that, the oxygen-plasma significantly improved the interfacial adhesion by etching, activating the surface of the fibres, and generating the oxygenic functional groups. However, for the fibres in different regions of the fabric, the degrees of the treatment were different, and a longer treatment time was needed to get the relative uniform effect through the fabric. Meanwhile, the loss of tensile property of the fibre due to treatment was investigated and found to be small in the range of useful treatments.  相似文献   

3.
Carbon fibres with different degrees of surface oxidation, as well as epoxy-sized fibres, were used to prepare epoxy composites in order to compare the effects of the fibres surface chemistry on the interfacial properties. X-ray photoelectron spectroscopy, water vapour adsorption measurements and contact angle examination were applied to characterize the carbon fibre surfaces. A correlation was found between the content of primary adsorption sites on the fibre surface and interlaminar shear strength (ILSS) of the composites. Higher values of ILSS obtained for the oxidized fibres containing composites are proposed to be due to the higher concentration of carboxylic groups created on the oxidized fibres surface and to the creation of chemical bonds at the fibre/epoxy matrix interface. Enthalpy of cure, reaction peak temperature and glass transition temperature of the composites were determined by differential scanning calorimetry.  相似文献   

4.
《Composites Part A》2001,32(3-4):361-371
An ultra-high modulus (UHM) carbon fibre was submitted to an oxygen plasma treatment. The effects of this treatment on the physical and chemical properties of the carbon surfaces were investigated by using surface characterisation techniques. SEM and STM studies were performed in order to determine the changes in the surface morphology. Observations on the nanometre scale lead to the conclusion that the plasma oxidation “cleaned” the original surfaces of carbonaceous impurities. XPS analysis of the treated fibres revealed a very significant increase of oxygen content. Single-fibre epoxy composites were prepared from as-received and plasma-treated fibres, and fragmentation tests were performed in order to characterise fibre/matrix interfacial adhesion. Raman spectroscopy has been used to map the strain along the fibre during tensile loading of the matrix, and the distribution of interfacial shear stress has been obtained. The quality of the interface improved dramatically after the surface treatment, supporting the ability of cold plasma oxidation to enhance the adhesion of UHM carbon to epoxy matrices. It is concluded that the increase of the oxygen surface content and the removing of the outermost layers may contribute in a co-operative way to the improvement on fibre/matrix adhesion.  相似文献   

5.
Short glass (GF) and carbon fibre (CF) reinforced poly-ether-ether-ketone (PEEK) composites were prepared by injection moulding and then microstructurally characterized. Their mechanical behaviour was determined by two different methods: a classical unidirectional tensile test and an immersion ultrasonic technique. The reinforcing effect of fibres is discussed in the context of the theory of reinforcement of Bowyer and Bader. Interfacial shear strength and critical fibre length at break are calculated for both PEEK/GF and PEEK/CF composites. Examinations of fracture surfaces of uniaxial tensile specimens revealed a higher adhesion of carbon fibres to PEEK matrix in regards to the adhesion concerning glass fibre-PEEK interfaces, which is in agreement with the results provided by the model. Compatibility of ultrasonic and tensile results is reported.  相似文献   

6.
《Composites Part A》2007,38(3):936-944
Carbon fibre was treated with oxidation–reduction followed by silsesquioxane coating method to improve the interfacial properties of carbon fibre/polyarylacetylene (CF/PAA) composites. The treatment method was divided into three phases, i.e., oxidation with oxygen plasma, reduction with LiAlH4, and coating treatment with vinyl silsesquioxane (VMS–SSO). The fibre surface composition and functional group were analyzed using X-ray photoelectron spectroscopy (XPS). The polar functional groups, especially C–OH which could react with Si–OH on silsesquioxanes, were increased after redox reaction. VMS–SSO coating treatment imported vinyl groups which could react with PAA resin during PAA cure process. The surface morphology of carbon fibre was observed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The mechanical interfacial properties of the CF/PAA composites were characterized by short-beam bending testing method. Interlaminar shear strength (ILSS) of the CF/PAA composites in different treatment phases were increased by 31.7%, 28.8%, and 59.3%, respectively. The conclusion that oxidation–reduction followed by silsesquioxane coating treatment is an effective method to improve the interfacial properties of the CF/PAA composites can be drawn. This method can be used in other resin systems if the functional groups on silsesquioxane are changed according to those in resins.  相似文献   

7.
Abstract

In order to improve the interfacial adhesion between carbon fibre and resin matrix in composite materials, it is necessary to treat the surface of the carbon fibre. In this paper, γ-ray irradiation technique was used to modify polyacrylonitrile based carbon fibre. Laser Raman spectrum and X-ray photoelectron spectroscopy were used to investigate and analyse the structure and chemical composition near the surface of the carbon fibre. The influence of irradiation parameters on the interlaminar shear strength (ILSS) of carbon fibre reinforced epoxy composite materials and the bundle tension strength of carbon fibre was studied. The interfacial adhesion behaviour of composites was characterised using torsional braid analysis. The results show that after irradiation the ILSS of the composite was increased by 20%, while the glass transition peak of the specimen, determined from torsional braid analysis, shifts towards a higher temperature compared with an unirradiated specimen. The value of the glass transition temperature T g is increased from 416.8 to 424.3 K. After irradiation there was no apparent change in the bundle tensile strength of carbon fibre. Investigations indicate that after irradiation the decrease of microcrystal size, the increase of surface free energy of carbon fibre surface and the active chemical function group formed from unsaturated carbon atoms improve the interface adhesion between the carbon fibre and the matrix in the composites.  相似文献   

8.
The objective of this work is to improve the interlaminar shear strength of composites by mixing epoxy resin and modifying carbon fibres. The effect of mixed resin matrix’s structure on carbon fibres composites was studied. Anodic oxidation treatment was used to modify the surface of carbon fibres. The tensile strength of multifilament and interlaminar shear strength of composites were investigated respectively. The morphologies of untreated and treated carbon fibres were characterized by scanning electron microscope and X-ray photoelectron spectroscopy. Surface analysis indicates that the amount of carbon fibres chemisorbed oxygen-containing groups, active carbon atom, the surface roughness, and wetting ability increases after treatment. The tensile strength of carbon fibres decreased little after treatment by anodic oxidation. The results show that the treated carbon fibres composites could possess excellent interfacial properties with mixed resins, and interlaminar shear strength of the composites is up to 85.41 MPa. The mechanism of mixed resins and treated carbon fibres to improve the interfacial property of composites is obtained.  相似文献   

9.
The effect of ozone surface treatment of carbon fibers (CF) on the tensile strength and tribological properties of carbon fiber reinforced polyimide (CF/PI) composite was investigated. Experimental results revealed that the tensile strength of ozone and air oxidation treated CF reinforced PI composite was improved compared with that of untreated composite. Compared with the untreated and air‐oxidated CF/PI composite, the ozone treated composite had the lowest friction coefficient and specific wear rate under given applied load and reciprocating sliding frequency. Ozone treatment effectively improved the interfacial adhesion between CF and PI. The strong interfacial adhesion of the composite made CF not easy to detach from the PI matrix, and prevented the rubbing‐off of PI, accordingly improved the friction and wear properties of the composite.  相似文献   

10.
Textile-reinforced composites have become increasingly attractive as protection materials for various applications, including sports. In such applications it is crucial to maintain both strong adhesion at fibre–matrix interface and high interfacial fracture toughness, which influence mechanical performance of composites as well as their energy-absorption capacity. Surface treatment of reinforcing fibres has been widely used to achieve satisfactory fibre–matrix adhesion. However, most studies till date focused on the overall composite performance rather than on the interface properties of a single fibre/epoxy system. In this study, carbon fibres were treated by mixed acids for different durations, and resulting adhesion strength at the interface between them and epoxy resin as well as their tensile strength were measured in a microbond and microtensile tests, respectively. The interfacial fracture toughness was also analysed. The results show that after an optimum 15–30 min surface treatment, both interfacial shear strength and fracture toughness of the interface were improved alongside with an increased tensile strength of single fibre. However, a prolonged surface treatment resulted in a reduction of both fibre tensile strength and fracture toughness of the interface due to induced surface damage.  相似文献   

11.
Carbon fibres (CF) were treated with different coatings, including [3-(methacryloxy)propyl]trimethoxylsilane (MPMS), [3-(methacryloxy)propyl]silsesquioxane (MPMS-SSO), and (methacryloxy)propyl polyhedral oligomeric silsesquioxane (Methacryl-POSS), to improve the interfacial properties of carbon fibre reinforced polyarylacetylene (PAA) matrix composites. MPMS-SSO was obtained from the hydrolytic condensation of MPMS. The complicated structure, including cage and ladder one, of MPMS-SSO may be assigned by Fourier transforms infrared (FT-IR) spectra, 1H, 13C and 29Si nuclear magnetic resonance (NMR) and ultraviolet matrix-assisted laser desorption ionization time-of-flight mass spectrometry (UV-MALDI-TOF MS). Interlaminar shear strength (ILSS) was tested to investigate the effect of coating structure on the interfacial bonding. The values of ILSS of untreated and treated CF/PAA composites with different coatings (MPMS, MPMS-SSO and Methacryl-POSS) show that the treatment effect of Methacryl-POSS coating is the best one and the MPMS-SSO coating is better than that of MPMS coating. SEM micrographs of shear fracture of CF/PAA composites also suggested the different coating treatment effects. The differences of increasing degrees of ILSS indicate that the structure of coating is important when silsesquioxanes are used as coatings to treat fibre surface for building up the adhesion and improving interfacial properties of fibre reinforced polymer matrix composites.  相似文献   

12.
《Composites Science and Technology》2007,67(11-12):2261-2270
A new epoxy resin matrix with good adherence to T800 carbon fibers (T800 CFs) in filament winding was developed by addition of hardener and resin diluter. Interfacial behavior of the T800 CF/epoxy composites was analyzed according to the Naval Ordnance laboratory (NOL) ring test, short-beam-shear test and fracture surface observation. Meanwhile, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were used in analysis of the interfacial behavior. The interfacial properties of the T800 CF/epoxy filament wound composites were improved by optimizing the matrices through increasing the toughness and reducing the viscosity, which is an important factor in influencing the wettability of T800 CFs. The Interlaminar shear strength (ILSS) of the unidirectional T800 CF/epoxy composites and the tensile strength of NOL-ring in this work reached to 123 and 2570 MPa, respectively. Also, the interfacial adhesion was much improved by the chemical reactions between the new matrix and the sizing on the T800 CFs.  相似文献   

13.
Carbon fibres (CF) were modified with different oligomeric silsesquioxane (SSO) coatings to improve the interfacial property of carbon fibres/polyarylacetylene (CF/PAA). The interlaminar shear strength (ILSS) of CF/PAA was tested to determine the effect of the treatment. Atomic force microscopy (AFM) in force modulation mode was adopted to study the cross-section surface of unidirectional CF/PAA composites and the relative stiffness of various phases, including CF, interphase and resin. The probability histogram and line distribution of CF/PAA cross-section surface relative stiffness, obtained from the statistical analysis of relative stiffness image, were used to compare and study the interface characterizations of composites. The results show that the ILSS increases effectively and the effects on interfacial characterizations are distinguished from each other in accordance with the CF surface modified with different SSO coatings owing to the various structures. Cage oligomeric silsesquioxane, including large organic groups (methacryl isobutyl-POSS), has better treatment result. AFM observations lead to the conclusion that an interfacial transition layer with different morphology and stiffness appears in CF/PAA composites after being treated by the SSO coatings of different structures. It can be inferred that the appearance of the transition layer may contribute to the improvement of fibre/matrix adhesion. Translated from Acta Materiae Compositae Sinica, 2006, 23(1): 105–111 [译自: 复合材料学报]  相似文献   

14.
The fatigue behaviour of carbon fibre/PEEK composite is compared with that of carbon/ epoxy material of similar construction, particularly in respect of the effect of hygrothermal conditioning treatments. Laminates of both materials were of 0/90 lay-up, and they were tested in repeated tension at 0° and at 45° to the major fibre axis. The superior toughness of the polyether ether ketone and its better adhesion to the carbon fibres results in composites of substantially greater toughness than that of the carbon/epoxy material, and this is reflected in the fatigue behaviour of the carbon fibre/PEEK. The tougher PEEK matrix inhibits the development of local fibre damage and fatigue crack growth, permitting a 0/90 composite with compliant XAS fibres to perform as well in fatigue as an epoxy laminate with stiffer HTS fibres. Hygrothermal treatments have no effect on the fatigue response of either material in the 0/90 orientation. The fatigue response of a cross-plied carbon/PEEK laminate in the ±45° orientation is much better than that of equivalent carbon/epoxy composites, again because the superior properties of the thermoplastic matrix.  相似文献   

15.
The properties and microstructures of several high-strength and high-modulus carbon fibrereinforced aluminium or aluminium alloy matrix composites (abbreviated as HSCF/Al and HMCF/Al, respectively, for the two types of fibre) have been characterized. The composites evaluated were fabricated by pressure casting based on a hybridization method. It was found that the strength degradation of high-modulus carbon fibres after infiltration of aluminium matrices was not marked and depended upon the type of aluminium matrix. However, the strength of high-strength carbon fibres was greatly degraded by aluminium infiltration and the degradation seemed to be independent of the type of aluminium matrix. The longitudinal tensile strength (LTS) of CF/Al composites was very different between HMCF/Al and HSCF/Al composites. The HMCF/Al composites had LTS values above 800 MPa, but the HSCF/Al composites had only about 400 MPa. In contrast, the transverse tensile strength of the HSCF/Al composites, above 60 MPa, was much higher than that of the HMCF/Al composites, about 16 MPa. Chemical reactions were evident to the interface of high-strength carbon fibres and aluminium matrices. There was no evidence of chemical products arising between high-modulus carbon fibres and Al-Si alloy and 6061 alloy matrices. However, it was considered that some interfacial reactions took place in pure aluminium matrix composites. Fracture morphology observation indicated that the good LTS of CF/Al composites corresponded to an intermediate fibre pull-out, whereas a planar fracture pattern related to a very poor LTS and fibre strength transfer. The results obtained suggested that interfacial bonding between carbon fibres and aluminium matrices had an important bearing on the mechanical properties of CF/Al composites. An intermediate interfacial bonding is expected to achieve good longitudinal and transverse tensile strengths of CF/Al composites.  相似文献   

16.
《Composites》1993,24(7):573-579
Surface properties of polyacrylonitrile (PAN) based carbon fibres and their adhesive strengths with epoxy resin are investigated. The surfaces of PAN-based carbon fibres were characterized by krypton adsorption and oxygen chemisorption, amount of acidic surface functional groups, X-ray photoelectron spectroscopy and Raman spectroscopy. Interfacial shear, interlaminar shear and transverse tensile strengths were measured as the interfacial adhesive strengths. The epoxy resin used for the embedded single filament specimens was the same as that used in the matrix of the composites. Empirical equations between surface properties and adhesive strengths were calculated. All adhesive strengths in this study showed the best correlation with the active surface area ratio, defined as the surface area ratio of oxygen chemisorption to krypton adsorption. From these relationships, the effect of each surface property on adhesive strength is discussed.  相似文献   

17.
碳纤维/聚醚醚酮复合材料界面的强相互作用   总被引:7,自引:0,他引:7  
利用X光电子能谱和Raman光谱研究了碳纤维/聚醚醚酮复合材料的界面结构,揭示了纤维和聚合物间存在着强相互作用:对树脂覆碳纤维结构的研究表明,聚合物的熔融促进这种强相互作用的形成,该作用涉及醚醚酮链段向共面构象的转变。  相似文献   

18.
Raman and luminescence spectroscopy have been used for the first time to determine the interface fracture energy for single-fibre composites. By using the measured fibre stress distributions in single-fibre fragmentation composite specimens and a simple energy-balance scheme, the energy for the initiation of interfacial debonding has been estimated for carbon (T50) and α-alumina (PRD-166 and Nextel 610) fibres embedded in epoxy resins. It has been found that the interface fracture energy shows good sensitivity to changes in the level of fibre/matrix adhesion due to surface treatment and sizing of the fibres. It is also found that the values of interface fracture energy correlate well with measured values of interfacial shear strength determined for the same fibre/matrix systems.  相似文献   

19.
《Composites Science and Technology》2004,64(13-14):2021-2029
Pitch-based short carbon fibres were treated by both a gaseous oxidation and a cryogenic treatment approach. It was found by scanning electron microscopy that the fibre surface roughness was increased by various oxidative conditions, whereas the fibre diameter was reduced by the cryogenic treatment. In both cases, appropriate treatments could effectively improve the mechanical properties in their epoxy composites due to the enhanced fibre–matrix interfacial bonding.  相似文献   

20.
Many attempts have been made to measure, evaluate and improve the level of interfacial adhesion in aramid/epoxy composites. Different surface treatments have been developed in order to promote chemical bonding between the fibre and the matrix but it is found that most of the surface treatments developed have shown little or no improvement in the level of interfacial adhesion. The interfacial properties of a model composite are often determined by measuring the interfacial shear strength using micromechanical test methods that employ different loading configurations. However, the values of interfacial shear strength determined using different test methods are found to be dependent upon the variation of localized stress in the samples due to the different loading configurations and often give different results. Using Raman spectroscopy it is shown that the strain-dependent shift of the 1610 cm–1 aramid Raman band can be used to determine the point-to-point variation of axial fibre strain along aramid fibres embedded in epoxy resin matrices from which the interfacial properties can be derived. The interfacial properties of aramid/epoxy model composites have been determined using Raman spectroscopy where the properties of the fibre, including different surface treatments, and the matrix have been changed systematically. The results are reviewed here and compared to those obtained using conventional micromechanical test methods. It is also demonstrated that the Raman technique can be used to characterize the interfacial properties of aramid/epoxy model composites deformed using different micromechanical test methods. In this way the interfacial properties can be determined at different loading levels enabling the progressive failure of the fibre/matrix interface to be monitored and defined accurately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号