首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
6061-T6 sheets with 0.8?mm thickness were successfully welded using high-speed friction stir welding (FSW) technology. The microstructural evolution and fracture behaviour of the joints were studied. The results show that sound joints could be obtained at the investigated high rotational speed of 8000?rev?min?1 and welding speeds of 300–1200?mm?min?1. Compared with conventional rotational speed, the grain size in the nugget zone (NZ) is obviously refined under high rotational speed. The Mg2Si, Al8Fe2Si and Al2CuMg precipitates reprecipitated adequately in the NZ during high-speed FSW, resulting in the number of the precipitates increased significantly, and further alleviating the weld softening. The difference in weld softening leads to different fracture characteristics during the tensile process. After artificial aging, the maximum welding softening in all joints is located in the heat affected zone, and the fracture is characterised by brittle fracture.  相似文献   

2.
AA 6061-T6 aluminium alloy(Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of light weight structures requiring a high specific strength and good corrosion resistance.Compared with the fusion welding processes that are routinely used for joining structural aluminium alloys,friction stir welding(FSW) process is an emerging solid state joining process in which the material welded does not melt and recast.Joint strength is influenced by the grain size and tensile strength of the weld nugget region.Hence,an attempt was made to develop empirical relationships to predict grain size and tensile strength of friction stir welded AA 6061-T6 aluminium alloy joints.The empirical relationships are developed by response surface methodology(RSM) incorporating FSW tool and process parameters.A linear regression relationship was also established between grain size and tensile strength of the weld nugget of FSW joints.  相似文献   

3.
A computational fluid dynamics (CFD) model is presented for simulating the material flow and heat transfer in the friction stir welding (FSW) of 6061-T6 aluminum alloy (AA6061). The goal is to utilize the 3-D, numerical model to analyze the viscous and inertia loads applied to the FSW tool by varying the welding parameters. To extend the FSW process modeling, in this study, the temperature-dependant material properties as well as the stick/slip condition are considered where the material at the proximity of the FSW tool slips on the lower pressure regions. A right-handed one-way thread on a tilted FSW tool pin with a smooth, concaved shoulder is, additionally, considered to increase the accuracy of the numerical model. In addition, the viscous and frictional heating are assumed as the only sources of heat input. In the course of model verification, good agreements are found between the numerical results and the experimental investigations.  相似文献   

4.
Tensile stress–strain properties of Al alloy 6061-T6 (AA6061-T6) and its butt welds produced by the friction stir welding (FSW) process were characterized in two different loading orientations. AA6061-T6 FS welds were made under three sets of welding conditions. Micro-hardness tests were performed to investigate microstructural evolution during the FSW process. Flat tensile specimens were machined normal and parallel to the weld line. Transvers and longitudinal tensile tests were run on the base material (AA6061-T6) and its FS welds in an Instron testing machine. The strength and ductility (or fracture strain) of the FS welds observed in the transverse orientation were substantially less than those in the longitudinal orientation. Constitutive modelling of uniaxial tensile stress–strain behaviour in both orientations was presented using a rate-independent Ludwik equation. In addition, microstructures of the base material and its FS welds were examined with optical and transmission electron microscopy to discuss the decrease in the flow stress level and the increase in the strain hardening rate of the FS welds.  相似文献   

5.
在摩擦焊接过程中的热效应导致的高模量使铝合金容易变形、强度降低。对船用异种铝合金进行了搅拌摩擦焊接。确定5052-0和6061-T6铝合金在焊接时移动速度和旋转速度的最优条件。得到铝合金最佳焊接条件为移动速度61mm/min和旋转速度1600r/min。  相似文献   

6.
ABSTRACT

Significant progress has been made on the implementation of friction stir welding (FSW) in the industry for aluminium alloys. However, steel FSW and other high-temperature alloys is still the subject of considerable research, mainly because of the short life and high cost of the FSW tool. Different auxiliary energies have been considered as a means of optimising the FSW process and reducing the forces on the tool during the plunge and traverse stages, but numerical studies on steel are particularly limited. Building on the state-of-art, laser-assisted steel FSW has been numerically developed and analysed as a viable process amendment. Laser-assisted FSW increased the traverse speed up to 1500?mm?min?1, significantly higher than conventional steel FSW. The application of laser assistance with a distance of 20?mm from the rotating tool reduced the reaction force on the tool probe tip up to 55% when compared to standard FSW.  相似文献   

7.
采用完全热力耦合模型研究了搅拌针直径、轴肩直径以及搅拌针锥角对2024-T3铝合金搅拌摩擦焊接过程中热生成、材料变形和能量历史的影响。结果表明:相比搅拌针接触面,轴肩接触面对搅拌摩擦焊接的热生成起主要作用。增加轴肩直径和减小搅拌针直径均能增加焊接温度,但是轴肩尺寸变化的影响更为明显。与6061-T6铝合金的搅拌摩擦焊接过程相比,2024-T3铝合金搅拌摩擦焊接的能量输入明显增加,同时塑性耗散与摩擦耗散的能量比减小。  相似文献   

8.
研究12 mm厚AA7075-T651铝合金板搅拌摩擦焊接头的疲劳裂纹扩展行为。从搅拌摩擦焊接头以及母材中截取试样,对试样进行疲劳裂纹扩展实验。对搅拌摩擦焊接头以及母材的横向拉伸性能进行评估。用光学显微镜和透射电镜分析焊接接头的显微组织。用扫描电镜观察试样的断裂表面。与母材相比,焊接接头的ΔKcr降低了10×10-3 MPa·m1/2。搅拌摩擦焊AA7075-T651接头的疲劳寿命明显低于母材的,其原因可归结于焊缝区的析出相在搅拌摩擦焊接过程中的溶解。  相似文献   

9.
G. Buffa  J. Hua 《CIRP Annals》2006,55(1):279-282
Tailor welded blanks (TWBs) are conventionally produced by laser or traditional welding processes. In either case, the joints are created by solid-liquid-solid phase transformations that result in undesirable microstructures and tensile residual stresses detrimental to joint performance. This study investigates feasibility of an alternate joining process, friction stir welding (FSW). The joining of AA7075-T6 blanks of different thickness is investigated through FE analyses and controlled experiments. It is found that for a successful joint, the welding parameters have to be carefully designed so that the resulting metal flow and the temperature history during FSW are consistent for the two thicknesses.  相似文献   

10.
The successful results presented in the literature on friction stir welding (FSW) of aluminium–steel joints ignore the appearance and formation of defects on the joint as reference points for evaluation. It also increases the controversy about the presence of intermetallic compounds of the type FexAly, and the lack of information about its origin. The objective of this study is to determine appropriate parameters for obtaining aluminium–steel joints free of defects, and their relationship to the formation of deleterious phases during FSW. Consolidated welded joints were obtained and the microstructure resulting from these welded joints of aluminium alloy 6063-T5 and AISI steel SAE 1020 was determined. A tungsten carbide tool (WC-14Co) was used at rotation and weld speeds of 300 rpm and 150 mm min? 1, respectively. The results highlight the importance of heat input in obtaining aluminium–steel joints with adequate surface appearance and penetration. The microstructural analysis reveals the formation of seven regions in the welded joint, highlighting the thermo-mechanically affected zone on the steel, a band of ultra-fine grains of ferrite and the absence of intermetallic compounds on the aluminium–steel interface.  相似文献   

11.
Abstract

AlMgSc and AA 7075-T6 alloys find applications in the aeronautic industry due to their lightweight associated with high mechanical strength and fatigue resistance. Both alloys have poor weldability when joined by fusion welding processes, which is overcome with the use of friction stir welding (FSW). Recent research work shows that electrical conductivity field analysis can be used as a material characterisation technique for solid state material welding exhibiting a microstructure gradient. This study aims to apply electrical conductivity field analysis to bead on plate FSW to identify the potential application of this technique to map and characterise microstructural transformations. The FSW was conducted on AlMgSc and AA 7075-T6 plates with different parameters, and electrical conductivity measurements were performed at half thickness, complemented by other techniques as hardness, scanning electron microscopy and energy dispersive spectroscopy. A good correlation was observed among electrical conductivity field, microstructure and hardness of different zones in FSW beads.  相似文献   

12.
In this study, orbital friction stir lap welding of 360?mm diameter AA5083-H321 tube to 350?mm diameter AA5083-O flange was investigated. The influence of rotational and travel speed of tool with triangular frustum pin on the metallurgical structure and mechanical properties of orbital friction stir lap welded samples were studied. The results indicated that defect free orbital lap joints are successfully obtained using tool rotational speed of 650 and 800?rev?min?1 with a constant travel speed of 40?mm?min?1. The strengthening mechanism in the stir zone is solid solution strengthening and dislocation looping. The maximum joint strength was achieved at a welding speed of 650?rev?min?1 and 40?mm?min?1. Failure of tensile shear test samples occurred far from the friction stir welding zone.  相似文献   

13.
Abstract

Flow and consolidation of the material under the tool shoulder and subsequent nugget formation are among the least understood aspects of friction stir welding and processing (FSW/P). Welding parameters and tool profile impact the process forces acting on the tool. This work is an observational study of the process forces associated with bead on plate runs on two aluminium alloys, 6061 and F357. Polar plots of the resultant forces acting on the tool spindle are analysed and correlated to the process parameters. The dependence of the nugget's width with various heat indices is evaluated.  相似文献   

14.
ABSTRACT

The dissimilar welds between aluminium (Al) alloy, A6061-T6, and stainless steel, type 304, were fabricated by a friction stir welding (FSW) technique. The FSW tool was offset to Al side and the probe was inserted only into Al plate. The softening occurred in Al side due to the heat input during FSW, while the hardness increased by the post-ageing treatment. Tensile strength of dissimilar weld also increased about 8.5% by the post-ageing. The residual stresses were measured based on the cos α method. The residual stresses parallel to the weld line, σxr, were predominantly tensile, while those perpendicular to the weld line, σyr, were compressive. Post-ageing treatment had little effect on the residual stresses.  相似文献   

15.
Abstract

Conventional friction stir welding (FSW) of high strength and high melting point materials, such as steel and titanium, has the disadvantages of a serious tool wear problem and slow welding speed. A new friction stir welding process for such materials called 'electrically enhanced friction stir welding process (EHFSW)' has been suggested and analysed using finite element modelling. The basic idea of EHFSW is that electric current passes from the welding tool into the workpiece through the contact area in the welding region. Thus it results in more localised heating while welding is in progress and is not simply a preheating process. The temperature distribution in the workpiece during the pin plunge stage and the welding stage of the EHFSW process has been determined. The results show that EHFSW can reduce the plunge force significantly with the help of localised electrical heating during the pin plunge stage, which may imply lower tool wear when compared with conventional FSW. At the same time, in the welding stage, the simulation results indicate that the welding speed of the EHFSW process can be at least two times faster than that of the conventional FSW process. Thus, finite element analysis shows that EHFSW is a promising process and could reduce tool wear while improving the welding speed, especially for high melting/O point materials.  相似文献   

16.
以6061-T6铝合金与AZ31B镁合金为研究对象,基于Abaqus软件进行了异种材料搅拌摩擦焊过程的温度场数值模拟,重点分析搅拌针偏置镁侧下的搅拌区温度峰值影响焊缝表面成形的规律。结果表明,当焊接温度峰值高于Al-Mg共晶温度时,搅拌针根部附近区域会出现较明显的黏着现象,其随着焊接速度的降低而加剧,这与焊接温度峰值的升高相关。随着焊接速度的增加,焊缝表面更易避免裂纹缺陷的产生。当搅拌头的转速为1200r/min且焊接速度为40mm/min时,6061铝/AZ31B镁异种材料焊接接头的表面成形良好。  相似文献   

17.
Abstract

This research programme evaluates the as welded properties of Al 7136-T76511 extrusions joined through friction stir welding (FSW). Microstructural characterisation and mechanical testing were performed on the baseline material and on panels friction stir welded at 250 and 350 rev min–1 (all other weld parameters held constant). Transmission electron microscopy revealed the microstructural features in each of the unique weld regions and demonstrated that the precipitate density and morphology in these regions correlates with the temperature profile produced by the FSW process. A thermal model of FSW is developed that utilises an energy based scaling factor to account for tool slip. The slip factor is derived from an empirical relationship between the ratio of the maximum welding temperature to the solidus temperature and energy per unit length of weld. The thermal model successfully predicts the maximum welding temperatures and profiles over a range of energy levels. The mechanical behaviour after welding is correlated to the temperature distribution predicted by the model and to the observed microstructural characteristics. As welded mechanical properties of the alloy trended positively with the energy per unit length of weld, i.e. the highest joint efficiency was achieved at the highest welding temperature.  相似文献   

18.
Abstract

Friction stir welding (FSW)1,2, developed in 1991 by The Welding Institute, UK is a joining process which overthrew welding concepts which existed at the time; its application has been progressed not only for soft alloys including aluminium, but also, in recent years, for steel.3 Sato and others carried out friction stir welding on 1080-O and 5083-O materials and investigated variations in the hardness.4 Ten years or so have passed since the development of friction stir welding, the process has been globally investigated and widely employed in various sectors such as vehicles, ships and the aerospace industry. Furthermore, investigations have also been carried out into the manufacture of dissimilar metal joints. For example, Enomoto studied 2024/AC4C cast alloy and reportedly obtained satisfactory joints.5 Li and others have investigated 2024/6061 and reported that both alloys are distributed at the weld zone in a stratified and complex manner.6  相似文献   

19.
ABSTRACT

Enhancing the heat transfer to the material being welded, instead of the tool, will improve the welding thermal efficiency. Friction stir welding of 5?mm thick 6061-T6 aluminium alloy plates was carried out with the newly produced tools. It was found that the thermal efficiency increased by 4.2% using a tool with all the new design features (i.e. hollow, fluted and thermally insulated) compared to the conventional tool for aluminium welding. To assess the benefits of the new tool design on steel FSW, a finite element numerical simulation study was undertaken. In this case, the simulation results yielded a welding thermal efficiency increase of 10–15% using a thermally coated tool, thereby offering potential productivity gains.  相似文献   

20.
Abstract

The influence of tool design and tool rotational speed variations on the torque, energy output, stir zone temperature and average grain size in the stir zones of AZ31 friction stir spot welds was investigated. The average stir zone grain size decreased by ~1 μm in AZ31 friction stir spot welds made using a three-flat/threaded tool design and tool rotational speeds of 2250 and 3000 rev min?1. However, there was no statistically significant influence of tool design on the average grain sizes in friction stir spot welds made using tool rotational speeds of 1500 and 1000 rev min?1. There was no evidence of grain growth in the stir zones of AZ31 friction stir spot welds. Similar torque, calculated energy output and stir zone temperature values were found in AZ31 friction stir spot welds made using threaded and three-flat threaded tool designs and tool rotational speeds from 1000 to 3000 rev min?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号