首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

A thermal model combined with a microstructural and yield strength model has been developed to give a prediction of precipitate evolution and strength in the as welded and post-weld heat treated condition for friction stir welding of 7xxx aerospace aluminium alloys. This fully coupled model is applied to an overaged high strength 7050 aluminium alloy friction stir welded using a range of welding rotation and translation speeds. The evolution of the microstructure has been predicted as a function of the process parameters. The resulting microstructural evolution is shown to be a complex function of both peak temperature observed during the weld cycle and heating/cooling rates. Yield strength has been calculated from the microstructural predictions and a comparison between predicted yield strength and measured hardness has been used to test the modelling approach. Reasonably good agreement between model and experiment is found over the wide range of process parameters investigated.  相似文献   

2.
Abstract

Friction stir spot welding (FSSW), which was recently developed as a spot joining technique, has been applied to a lap joint of Al alloy 6061 sheets, 1 mm in thickness, to clarify its microstructural features of the joint. A nugget shaped stir zone having finer grain size was observed around the exit hole of the probe. Crystallographic texture analyses using EBSD method suggested that the material flow occurred along the rotating direction of the FSSW tool in the wide region including the stir zone. In the periphery of the nugget shaped stir zone, which was characterised by finer grain size than the stir zone interior, no inclusions or precipitates were found on the SEM scale. A softened region was formed around the joint centre, which could be explained as resulting from dissolution and/or growth of the strengthening precipitates due to thermal cycle of FSSW.  相似文献   

3.
Abstract

In the present investigation, the microstructure and mechanical characteristics of dissimilar A319 and A356 cast Al alloys plates joined by friction stir welding (FSW) were evaluated. The effect of tool rotational and welding speeds as well as the post-weld heat treatment (PWHT) on such properties was investigated. Post-weld heat treatment was carried out at a solutionising temperature of 540°C for 12 h followed by aging at 155°C for 6 h. For the as welded specimens, the welded zone (WZ) exhibited higher hardness values when compared with the A319 and A356 parent alloys. The peak hardness at the WZ was found to increase by increasing the tool rotational speed and/or reducing the welding speed. In contrast, the post-weld heat treated (PWHTed) specimens exhibited lower hardness values at the WZ than the parent alloys. For PWHTed specimens, the peak hardness at the WZ was found to decrease by increasing the tool rotational speed and/or reducing the welding speed. Tensile tests results demonstrate that, for the as welded specimens, the tensile fracture took place on A356 side where the hardness was minimal. While for PWHTed specimens, the fracture took place at the WZ. Increasing the tool rotational speed reducing both tensile and yield strengths, but increases the ductility of the joint.  相似文献   

4.
Abstract

Friction stir welding (FSW) experiments with different panel dimensions and welding parameters have been designed to study the distortion of FSW. The FSW experiments were carried out with a load control facility to make the welding parameters reliable. The distortion of FSW is much smaller than that of arc welding, but it is still very significant. Three-dimensional distortion measuring system was applied to further study distortion trends. The results show that the distortion after FSW is in saddle shape, with convex bending in longitudinal direction and concave bending in transverse direction. This distortion pattern is in contrary with that of traditional arc welding. It is also found that increasing the panel length increases the longitudinal distortion but almost do not influence the transverse distortion. Increasing the rotation speed increases both longitudinal distortion and transverse distortion. The influence of welding speed on distortion is not very clear.  相似文献   

5.
Abstract

CFD modelling of friction stir welding has been conducted to understand and optimise the welding of thick, 7449 aluminium alloy for aerospace applications. The aim is to produce high strength, defect free welds that do not break the tool. The models compared different pin profiles and rotation speeds and were undertaken in two stages. The first stage involved creating a thermal model to better understand the generation and flow of heat. The second stage involved analysing the flow near the tool with a two-dimensional model. The traversing force results from the two-dimensional planar models compared favourably with experimental findings. The pressure distribution and deformation region size were compared for the different models. Novel maps of the deformation conditions experienced in each weld were produced. The analysis suggested reasons why some pin profiles and rotation speeds are preferable to others and explained the difference in the traversing force measurements.  相似文献   

6.
Abstract

A feasibility investigation has been carried out of the formation of surface composite by uniformly distributing SiC particles 1˙25 µm in size into a surface layer of an A 1050-H24 Al plate through friction stir processing (FSP). The SiC particle was filled into a groove cut on the Al plate, covered by an Al sheet 2 mm thick, and a rotating tool was penetrated from the cover sheet so that the probe tip reached a depth beyond the groove bottom. The effects of process parameters (rotation speed and travelling speed) and applying multiple passes on the distribution of SiC particle in the nugget zone were investigated. The effects of groove size and its position relative to the tool probe were also investigated. Applying multiple passes had a great effect on the homogeneity of the SiC particle distribution. At rotation speeds of 2000–3000 rev min?1, the SiC particles tended to cluster in some places in the nugget zone. By decreasing the rotation speed to 1000–1500 rev min?1, the SiC particle was distributed in almost all the nugget zone area when the groove was 2–3 mm wide and 1˙5 mm deep. On the other hand, the stirring action of FSP was insufficient to distribute homogenously the SiC particles when the groove size was increased to 3×2 mm. By shifting the groove position towards the advancing side of the tool probe, the distribution of the SiC particles in the nugget zone became better. The defect free nugget zone with homogenously distributed SiC particles was obtained in a sample produced by FSP at rotation speeds of 1500 rev min?1 for the first pass and 1250 rev min?1 for the second and third passes. Microhardness of the nugget zone was increased to a level as high as 55 HV when the groove size was 3×1˙5 mm. The effect of the rotation speed on the particles dispersion was discussed with particular reference to the vertical material flow in the nugget zone.  相似文献   

7.
Abstract

The objective of the present paper is to investigate the effect of including the tool probe in the numerical modelling of three-dimensional heat flow in friction stir welding (FSW). The heat flow close to the probe/matrix interface is investigated. In the models presented, the heat is forced to flow around the 'probe hole'. In this manner, the material flow through the probe region, which often characterises other thermal models of FSW, is avoided. This necessitates controlling the convective heat flow by prescribing the velocity field in the narrow shear layer at the tool/matrix interface. As a consequence the sliding, sticking, or partial sliding/sticking condition can be modelled. Six cases are established, which are represented by three stages of refinement of the heat source model, combined with two different contact conditions, i.e. full sliding and full sticking.  相似文献   

8.
Abstract

Cast Mg alloys were processed using friction stir processing (FSP) to acquire a fine grained structure and high strength. Actually, FSP is a novel grain refinement method for light metal alloys. Using FSP, a cast microstructure with coarse grain size was refined to equiaxial fine grain through dynamic recrystallisation; second phase particles were finely dispersed by FSP. Moreover, FSP is effective to eliminate cast defects such as microshrinkages or porosities. Commercial die cast Mg alloy (AZ91D) and high strength Mg–Y–Zn alloy plates were prepared for FSP. Heat input using a rotational tool during FSP closely affected the microstructure in the stirred zone. Actually, FSP with lower heat input produced a finer grain size and higher hardness. Changes in the friction stir processed microstructures affecting mechanical properties were not only grain refinement, but also second phase particle distributions. Results show that alloys with high hardness by FSP have finely dispersed second phase particles without dissolution during FSP.  相似文献   

9.
Abstract

Thinning in friction stir lap joints and its relation with the process variables was investigated. Friction stir welds were made on 1 mm thick AA6111 aluminium alloy sheets in order to study the effects of rotation rate, traverse speed, plunge depth, tilt angle and pin height on faying surface defects. Sheet thinning on the advancing and retreating sides was quantified and the lap shear strength of the joints was evaluated. A decrease in the pitch of the runs at constant rotation rate increased the sheet thinning and reduced the joint strength in a linear manner. Process pitch and pin height were found to be the most critical factors in determining the faying surface lift up. A pin of the same height as the sheet thickness resulted in maximum lap shear strength. Tool tilt did not show a significant effect on the sheet thinning.  相似文献   

10.
Abstract

It has been widely recognised that the fundamental mechanism of weld formation in friction stir welding (FSW) is too complex, a phenomenon to be understood completely. In the present study two modes of metal transfer phenomenon in FSW have been discussed with the help of three FSW techniques. In the first technique a strip is welded to the plate by the process, in the second one the brass sheet is inserted perpendicular to the welding direction and in the third one the process is performed with tools having different pin lengths. The results suggest a strategy to model the process particularly for predicting welding tool performance.  相似文献   

11.
Abstract

This research programme evaluates the as welded properties of Al 7136-T76511 extrusions joined through friction stir welding (FSW). Microstructural characterisation and mechanical testing were performed on the baseline material and on panels friction stir welded at 250 and 350 rev min–1 (all other weld parameters held constant). Transmission electron microscopy revealed the microstructural features in each of the unique weld regions and demonstrated that the precipitate density and morphology in these regions correlates with the temperature profile produced by the FSW process. A thermal model of FSW is developed that utilises an energy based scaling factor to account for tool slip. The slip factor is derived from an empirical relationship between the ratio of the maximum welding temperature to the solidus temperature and energy per unit length of weld. The thermal model successfully predicts the maximum welding temperatures and profiles over a range of energy levels. The mechanical behaviour after welding is correlated to the temperature distribution predicted by the model and to the observed microstructural characteristics. As welded mechanical properties of the alloy trended positively with the energy per unit length of weld, i.e. the highest joint efficiency was achieved at the highest welding temperature.  相似文献   

12.
Abstract

This research programme explores predictive tools that assess friction stir weld quality in aluminium alloys through dynamic characterisation. The study focuses on the correlations between dynamic interrogations measures of friction stir welded panels with the weld energy, as welded mechanical properties and the microstructure. 7136-T76 aluminium extrusions were joined at unique weld energies, and to characterise and identify the friction stir welds through non-destructive techniques, theoretical modelling and lab scale dynamic testing were conducted to establish the correlation between the weld energy and the associated spectral characteristics of the beam (natural frequencies/mode shapes). In this non-destructive evaluation study, the modal parameters were measured and were correlated with the friction stir weld microstructure and the physical parameters of the welded components, such as axial and flexural rigidities. The viability of weld parameter identification and weld quality assessment of friction stir welding beams using dynamic interrogation techniques is demonstrated.  相似文献   

13.
Abstract

This paper proposes a new welding method, resistance friction stir welding (RFSW), which provides a novel method to solve some of the challenges of friction stir welding high melting point of ferrous and non-ferrous metals. The RFSW is a new hybrid welding technology, which utilises the advantages of both resistance welding and friction welding. The technological principle of RFSW uses the compound effects of resistance heating and friction heating; the integration methods are discussed and analysed in this paper. It is believed that RFSW is an innovative, practical welding technique. The national patents for invention have already been applied in China.  相似文献   

14.
Abstract

The peak temperatures during friction stir spot welding of similar and dissimilar aluminium and magnesium alloys are investigated. The peak temperatures attained during friction stir spot welding of Al 6111, Al 2024, and AZ91 are within 6% of their solidus temperatures. In dissimilar AZ91/Al 6111 spot welds the peak temperature corresponds with the α-Mg solid solution and Mg17Al12 eutectic temperature of 437°C. An a-Mg plus Mg17Al12 eutectic microstructure is produced in dissimilar friction stir spot welds when material displaced during pin penetration into the lower sheet material contacts the upper sheet material at the eutectic temperature.  相似文献   

15.
16.
Abstract

The microstructural features and overlap shear strength properties of friction stir spot welds made between Al 6111 and low carbon steel, and between Mg alloy AM60 and DP600 dual phase steel, are investigated. When Al 6111 is the upper sheet in the dissimilar sandwich, completed spot welds show evidence of intermetallic layer formation and cracking. Increasing tool pin penetration into the lower sheet provided increased mechanical interlocking of the sheets due to clinching. However, increasing penetration also promoted intermetallic formation and cracking in completed welds. However, dissimilar AM60/DP600 steel friction stir spot welds produced with AM60 as the upper sheet in the dissimilar sandwich do not show evidence of intermetallic formation and cracking may be avoided by removing the zinc coating on the DP600 steel before the friction stir spot welding operation.  相似文献   

17.
Abstract

A dimensionless correlation has been developed based on Buckingham's π-theorem to estimate the peak temperature during friction stir welding (FSW). A relationship is proposed between dimensionless peak temperature and dimensionless heat input. Apart from the estimation of peak temperature, it can also be used for the selection of welding conditions to prevent melting of the workpiece during FSW. The correlation includes thermal properties of the material and the tool, the area of the tool shoulder and the rotational and translation speeds of the tool. The peak temperatures reported in the literature during FSW of various materials and welding conditions were found to be in fair agreement with the proposed correlation.  相似文献   

18.
Abstract

One of the most relevant aspects of friction stir welding is the possibility to weld different materials. In the present paper, the authors present an improved continuum finite element model for the simulation of friction stir welding processes aimed to obtain T joints, made of a stringer in AA7175-T73511 and of a skin in AA2024-T4. The model, taking into account the thermomechanical behaviours of the two different materials, is utilised to study the occurring material flow and residual stress state. Numerical results are compared with experimental observations: the model is able to predict the material flow, obtaining important information on the joint failure mode.  相似文献   

19.
Abstract

Conventional friction stir welding (FSW) of high strength and high melting point materials, such as steel and titanium, has the disadvantages of a serious tool wear problem and slow welding speed. A new friction stir welding process for such materials called 'electrically enhanced friction stir welding process (EHFSW)' has been suggested and analysed using finite element modelling. The basic idea of EHFSW is that electric current passes from the welding tool into the workpiece through the contact area in the welding region. Thus it results in more localised heating while welding is in progress and is not simply a preheating process. The temperature distribution in the workpiece during the pin plunge stage and the welding stage of the EHFSW process has been determined. The results show that EHFSW can reduce the plunge force significantly with the help of localised electrical heating during the pin plunge stage, which may imply lower tool wear when compared with conventional FSW. At the same time, in the welding stage, the simulation results indicate that the welding speed of the EHFSW process can be at least two times faster than that of the conventional FSW process. Thus, finite element analysis shows that EHFSW is a promising process and could reduce tool wear while improving the welding speed, especially for high melting/O point materials.  相似文献   

20.
Abstract

The fracture toughness in a friction stir welded joint of thick plates of structural aluminium alloy type A5083-O is investigated. A joint between two 25 mm thick plates is fabricated by one sided, one pass friction stir welding. The Charpy impact energy and critical crack tip opening displacement (CTOD) in the friction stir weld are much higher than those in the base metal or heat affected zone, whereas mechanical properties such as stress–strain curve and Vickers hardness are not conspicuously different. The effects of the microstructure on crack initiation and propagation are studied in order to clarify the difference in fracture toughness between the stir zone and base metal. The analyses of the fracture resistance curves and the diameters of dimples in the fracture surface after both tensile and bending tests show that the fine grained microstructure in the stir zone helps to increase ductile crack initiation and propagation resistance. It is found that the high fracture toughness value in the stir zone is affected by the fine grained microstructure in friction stir welds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号