首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long-term thermal aging is a typical factor affecting the thermo-mechanical fatigue life for hot-end components in the gas turbine. The present work focuses on the development of thermal aging-induced damage in 2-D woven oxide/oxide ceramic matrix composites from micro-mechanism and macroscopic mechanical performance. The porosity evolution and mechanical performance after long-term thermal aging were characterized through mercury intrusion measurements and uniaxial compressive tests, respectively. The results show that the decrease of micro-porosity directly reflects the irreversible evolution of material microstructure in the thermal aging process, and the decrease of compressive strength after aging is the macroscopic reflection of the microstructure variation. The porosity increment of matrix was thus used to characterize the thermal aging-induced damage, establishing a unique analysis model between the increment of micro-porosity under thermal aging and the corresponding degradation of material compressive strength. The experimental results are in good agreement with the established model.  相似文献   

2.
对含石墨的炭/陶复合材料优良的抗热震性能进行了讨论。这种性质与石墨的导热系数大、断裂功高、热膨胀和弹性模量小密切相关。  相似文献   

3.
An experimental thermo-mechanical facility was developed with conditions towards that of the combustion environments experienced by the hot section components of a jet engine. Two different melt-infiltrated (MI) ceramic matrix composites (CMCs) were evaluated, one containing Hi-Nicalon Type S fibers and the other Tyranno SA fibers. Specimens considered in this study were subjected to fatigue loading with a stress ratio of 0.1, frequency of 1 Hz and a specimen surface temperature of 1200 ± 20 °C. Results indicate that fatigue life in the combustion environment was an order of magnitude lower compared to the furnace environment and is attributed to the hostile environment present with the burner rig. Post-test microscopy was conducted in order to understand the damage mechanisms and oxidation behavior. Polished longitudinal sections of the burner rig specimens revealed longitudinal cracking which could be attributed to the presence of thermal gradient stress. Electrical resistance (ER) was implemented to monitor the damage.  相似文献   

4.
《Ceramics International》2023,49(20):32799-32807
Al2O3/ZrO2/SiC ceramic composites with different SiC contens have been prepared by hot pressuring. The effect of SiC content on the microstructure and mechanical properties of composites have been studied. The results show that SiC has obvious grain refinement effect on ZTA ceramics and change the fracture mode of the matrix from intergranular fracture to transgranular fracture. Simultaneously, it has been found that the mechanical properties of the material are significantly enhanced in comparison with ZTA matrix. The highest strength is acquired at 10% SiC content, the flexural strength and toughness are obtained when the SiC content is 15 vol%, and the values are 18.86 GPa, 1262 MPa and 6.13 MPa m1/2, respectively. The mechanisms of hardening, strengthening and toughening have been discussed.  相似文献   

5.
《Ceramics International》2021,47(24):33956-33971
Ablative composites have been in use for thermal protection of space vehicles for decades. Carbon-phenolic composites have proven to perform exceptionally well in these applications. However with development in aerospace industry their performance needs improvement. In this field, different carbon-based and ceramic additives have been introduced into ablative composite systems. This review article gives a comparative analysis of researches done in this field in the recent past. Density, ablative, thermal and mechanical properties of ablative composites with different ultra-high temperature ceramic particles i.e. ZrSi2, Cenosphere, nano-SiO2, BN etc. and carbon-based nanoparticles i.e. CNTs, nano-Diamonds, Graphene oxide etc. used as additives, have been compared and discussed. Emphasis is put on carbon-phenolic composite systems although some epoxy matrix systems have also been discussed for comparison.  相似文献   

6.
Dimensions and thermal insulation properties of nanoporous ceramics are unstable at high temperatures due to structural disruptions. This work prepared high entropy (LaCeSmEuNd)2Zr2O7 ceramic aerogel via non-alkoxide sol-gel, supercritical drying, and calcination. XRD and EDS analysis showed that the (LaCeSmEuNd)2Zr2O7 ceramic existed as a single phase. SEM images demonstrated the successful synthesis of aerogel structure. After two hours of annealing at 1200 °C, the cylindrical sample pressed from (LaCeSmEuNd)2Zr2O7 ceramic aerogel had a compressive strength of 58.75 MPa, and its diameter shrinkage was 0.56%, whereas the La2Zr2O7 reached 13.68%. The thermal diffusivity of annealed (LaCeSmEuNd)2Zr2O7 was as low as 0.119 mm2 s?1, and its thermal conductivity at room temperature was 0.073 W·m?1 K?1, which was attributed to lattice disorder, stable porous structure, and abundance of grain boundaries caused by high entropy effects. Extending the high entropy effect to ceramic nano-insulation products is beneficial for enhancing their thermal stability.  相似文献   

7.
In order to reveal the effect of matrix cracks resulted from thermal residual stresses (TRS) on the thermal expansion behavior of ceramic matrix composites, SiBC matrix was introduced into Cf/SiC and SiCf/SiC by liquid silicon infiltration. The TRS in both two composites were enlarged with incorporating SiBC matrix which has higher coefficients of thermal expansion (CTEs) than SiC matrix. Due to the relatively high TRS, matrix cracks and fiber/matrix (f/m) debonding exist in Cf/SiC-SiBC, which would provide the space for the expansion of matrix with higher CTEs. For SiCf/SiC, no matrix cracking and f/m debonding took place due to the close CTEs between fiber and matrix. Accordingly, with the incorporation of SiBC matrix, the in-plane CTE of Cf/SiC between room temperature to 1100 °C decreases from 3.65 × 10−6 to 3.19 × 10−6 K-1, while the in-plane CTE of SiCf/SiC between room temperature to 1100 °C increases slightly from 4.97 × 10−6 to 5.03 × 10−6 K-1.  相似文献   

8.
This paper presents a comparison of microstructures and mechanical properties of different ZrB2-based CMCs, which were manufactured in the frame of the Horizon 2020 European C3HARME research project through different processes: slurry infiltration and sintering (SIS), polymer infiltration and pyrolysis (PIP) and radio frequency chemical vapour infiltration (RF-CVI). Tensile testing with a novel optimized shape of the specimens was performed and compared with the results of flexural tests to assess the structural properties. For the first time, tensile tests up to 1600 °C were carried out on UHTCMCs. Despite the different microstructural features, all the ZrB2-based CMCs demonstrated excellent structural properties even at elevated temperature. The characterization shows how the different amount of porosity and fibre properties, such as its stiffness, strength and elongation, affected the mechanical behaviour of the C3HARME’s composites. Finally, the role of the high level of residual thermal stresses is discussed.  相似文献   

9.
Acoustic emission and electrical resistance were monitored for SiC-based laminate composites while loaded in tension and correlated with damage sources. The ceramic matrix composites were composed of Hi-Nicalon Type S™ fibers, a boron-nitride interphase, and pre-impregnated (pre-preg) melt-infiltrated silicon/SiC matrix. Tensile load-unload-reload or tensile monotonic tests were performed to failure or to a predetermined strain condition. Some of the specimens were annealed which relieved some residual matrix compressive stress and enabled higher strains to failure. Differences in location, acoustic frequency and energy, and quantity of matrix cracking have been quantified for unidirectional and cross-ply type architectures. Consistent relationships were found for strain and matrix crack density with acoustic emission activity and the change in measured electrical resistance measured at either the peak stress or after unloading to a zero-stress state. Fiber breakage in the vicinity of composite failure was associated with high frequency, low energy acoustic events.  相似文献   

10.
高温熔烧法制备金属基陶瓷涂层的研究   总被引:4,自引:1,他引:4  
以玻璃熔块、氧化铬粉、粘土粉和硅酸锆微粉为原料制成的涂料,用滚涂法将其均匀涂覆在不锈钢管上,经高温(1000~1050℃保温20min)熔烧制备出了耐磨、抗高温氧化的陶瓷涂层。对陶瓷涂层的耐磨性、抗高温氧化性、抗热震性等性能进行了测试,并对影响涂层性能的因素进行了研究。结果表明:引入具有较大热膨胀系数的玻璃熔块料有利于提高涂层结合性;加涂层的试样均能明显改善基体的耐磨性和抗高温氧化性。涂层的耐磨性随硅酸锆微粉加入量的增加而提高,加入量为15%时耐磨性和抗热震性最好,其热震循环(1000℃空冷)可达22次。  相似文献   

11.
For the production of C/C-SiC brake discs via the liquid silicon infiltration method (LSI), the hot pressing process is the state of art technique for the moulding of the CFRP composites. This technique consists of several manual steps which increase production cost. The overall cost can be reduced by implementing injection moulding process.In this paper the influence of the moulding process (hot pressing, injection moulding) on the properties of semi-finished and final products during the production of short-fibre-reinforced C/C-SiC composites by means of the LSI process are examined. The starting polymer is chemically characterised. Carbon-fibre-reinforced plastic (CFRP) composites are fabricated by hot pressing, as well as injection moulding process. The CFRP composites are converted into porous C/C composites by pyrolysis. Liquid silicon is infiltrated to form dense C/C-SiC composites, which are further investigated during the course of this paper. Significant differences in properties of the composites are discussed.  相似文献   

12.
To protect carbon/carbon (C/C) composites from oxidation at elevated temperature, an effective WSi2-CrSi2-Si ceramic coating was deposited on the surface of SiC coated C/C composites by a simple and low-cost slurry method. The microstructures of the double-layer coatings were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy analyses. The coating exhibited excellent oxidation resistance and thermal shock resistance. It could protect C/C composites from oxidation in air at 1773 K for 300 h with only 0.1 wt.% mass gain and endure the thermal shock for 30 cycles between 1773 K and room temperature. The excellent anti-oxidation ability of the double-layer WSi2-CrSi2-Si/SiC coating is mainly attributed to the dense structure of the coating and the formation of stable vitreous composition including SiO2 and Cr2O3 produced during oxidation.  相似文献   

13.
《Ceramics International》2019,45(12):15057-15064
Novel ceramic foams have been prepared by high temperature sintering of waste mineral wool and waste glass using SiC as a foaming agent. The aim of the research was to understand the effects of composition and sintering conditions on the properties and microstructure and produce commercially exploitable ceramic foams. Optimum ceramic foams were formed from 40 wt% mineral wool waste and 2 wt% SiC, sintered at 1170 °C using a heating rate of 20 °C/min with a 20 min hold at peak temperature. The ceramic foams produced had a bulk density of 0.71 g/cm3 and a uniform pore size distribution. The research shows that ceramic foams can be formed from waste mineral wool and these can be used for thermal insulation with associated economic and environmental benefits.  相似文献   

14.
《Ceramics International》2022,48(17):24687-24694
The R-curve behavior and toughening mechanisms of graphene nano-platelets (GNPs) reinforced ceramic composites are investigated. A toughening model is developed with the consideration of interface debonding, crack bridging and pull-out of GNPs, which can be used to quantify the contribution of different mechanisms to the improved toughness of ceramic composites. The theoretical results agree well with the experimental data when GNPs homogeneously dispersed in ceramic matrix. All prepared GNPs/ceramic composites exhibit a raising R-curve behavior owing to the toughening mechanisms induced by GNPs, and the curve becomes steeper with increasing GNPs content, indicating that the fracture resistance and flaw tolerance are improved. The dominant toughening mechanism is GNPs pull-out, which is followed by crack bridging and interface debonding. Furthermore, the analytical model suggests that improving GNPs properties, interfacial sheer strength and reducing GNPs thickness can improve the fracture toughness of ceramic composites.  相似文献   

15.
《Ceramics International》2023,49(18):29729-29735
Herein, five new La2Zr2O7 based high-entropy ceramic materials, such as (La0.2Ce0.2Gd0.2Y0.2Er0.2)2Zr2O7, (La0.2Ce0.2Gd0.2Er0.2Sm0.2)2Zr2O7, (La0.2Gd0.2Y0.2Er0.2Sm0.2)2Zr2O7, (La0.2Ce0.2Y0.2Er0.2Sm0.2)2Zr2O7, (La0.2Ce0.2Gd0.2Y0.2Sm0.2)2Zr2O7), were synthesized using a sol-gel and high-temperature sintering (1000 °C) method. The spark plasma sintered (SPS) (La0.2Ce0.2Gd0.2Er0.2Sm0.2)2Zr2O7 pellet shows a low thermal conductivity of 1.33 W m-1 K-1 at 773 K, and it also exhibits better CaO–MgO–Al2O3–SiO2 corrosion resistance than that of Y2O3 stabilized ZrO2. It shows that (La0.2Ce0.2Gd0.2Er0.2Sm0.2)2Zr2O7 has a promising application potential as a thermal barrier coating.  相似文献   

16.
In this work multiphase Nb(C,N)/Nb5Si3 ceramic composites containing niobium silicide, nitride and carbide phases were designed by using the polymer derived ceramic (PDC) route to avoid the complicated shaping of refractory metal compounds. Starting from polycarbosilazane (PCSZ) precursor powder and metallic niobium as reactive filler green compacts were manufactured by uniaxial warm pressing and stabilized by subsequent crosslinking. Due to the reactivity of both the Nb and the rearrangements within the forming amorphous SiCN phase a porous ceramic material is generated via solid-state reaction during thermal treatment. Depending on the amount of PCSZ as well as on the pyrolysis conditions the particles within this network reveal a core/rim structure containing submicron-sized Nb2CN, NbC as well as coarse-grained Nb2N phases in the core and Nb5Si3 or alternatively metastable Nb5Si4C phase at the particle surface.  相似文献   

17.
Silicon carbide particulate reinforced alumina matrix composites were fabricated using DIrected Metal OXidation (DIMOX) process. Continuous oxidation of an Al-Si-Mg-Zn alloy with appropriate dopants along with a preform of silicon carbide has led to the formation of alumina matrix surrounding silicon carbide particulates. SiCp/Al2O3 ceramic matrix composites fabricated by the DIMOX process, possess enhanced mechanical properties such as flexural strength, fracture toughness and wear resistance, all at an affordable cost of fabrication. SiCp/Al2O3 matrix composites were investigated for mechanical properties such as flexural strength, fracture toughness and hardness; the composite specimens were evaluated using standard procedures recommended by the ASTM. The SiCp/Al2O3 ceramic matrix composites with SiC volume fractions from 0.35 to 0.43 were found to possess average bend strength in range 158-230 MPa and fracture toughness was found to be in range of 5.61-4.01 MPa√m. The specimen fractured under three-point loading as observed under scanning electron microscope was found to fail in brittle manner being the dominant mode. Further the composites were found to possess lower levels of porosity, among those prepared by DIMOX process.  相似文献   

18.
Particulate magnetoelectric ceramic composites (PMCC) have received much attention since the last decade. These composites have many technological applications and are usually composed by magnetostrictive and piezoelectric phases. Cobalt-based spinel ferrites are among the most studied magnetostrictive phases for ferrite-based PMCCs and BaTiO3 is an interesting choice for the piezoelectric phase because it is a lead-free ceramic, unlike the traditional PZT. In this work, cobalt ferrite (FCO) and Ni–Co ferrite (FNICO) were produced by the ceramic method and mixed to BaTiO3 (TB) in order to further obtain sintered ferrite-BaTiO3 particulate ceramic composites with a composition of 15 mol% ferrite – 85 mol% BaTiO3. The ferrites, the BaTiO3, and the ferrite-BaTiO3 mixtures were analyzed by dilatometry, thermogravimetry (TG), and calorimetry (DSC) in temperatures up to 1300–1400 °C, with the aim to analyze the sintering behavior and the interactions between both ferrites and the BaTiO3 during sintering. Sintered TB-FNICO and TB-FCO composite samples were also produced and they were analyzed by scanning electron microscopy (SEM) and X-ray diffractometry (XRD). The dilatometry results evidenced that the densification of the ferrite-BaTiO3 samples is impaired, when compared to the pure ferrite and BaTiO3 samples. The DSC/TG results evidenced the occurrence of reactions between the ferrites and the BaTiO3 when they are co-sintered in air or argon atmospheres. The XRD patterns of the sintered composite samples did not exhibit diffraction peaks attributed to a third phase, whilst the punctual EDS analysis showed evidence of diffusion between the ferrite and BaTiO3 particles.  相似文献   

19.
A new class of ZrB2 composites reinforced with 40 vol% C short fibers and containing 5 vol% SiC in combination with 5 vol% MoSi2, HfSi2 or WSi2 successfully withstood extreme conditions in a oxyacetylene torch. Different responses to the torch testing were recorded depending on which secondary phase was present; this was primarily a result of the final density which ranged between 83 and 94% of the theoretical value. The temperatures achieved on the surfaces of the samples tested also varied as a function of the residual porosity and ranged from 2080 to 2240 °C. HfSi2 additions offered the best performance and exceeded that of the baseline material that contained only SiC. It is believed that this was due to its ability to promote the elimination of porosity during densification and to the refractory nature of its oxide, HfO2. In contrast, MoSi2 and WSi2 formed highly volatile oxides on the surface, which did not offer better protection than the ZrO2-SiO2 scale that developed in the baseline.  相似文献   

20.
With the advantage of high temperature resistance, low expansion, low density and excellent thermal stability, carbon fiber reinforced ceramic composites have a very wide range of applications in aerospace, military, energy, chemical industries and transportation. Short carbon fiber reinforced ceramic composites are characterized by simple processes, low manufacturing costs, short preparation times and automated production, can be used in fields such as friction materials and thermal protection system. This paper reviews the current status and recent advances in research on homogenization techniques, mechanical properties, thermal properties and frictional properties of short carbon fiber reinforce ceramic composites. Different processing routes for short carbon fiber reinforced ceramic composites, including reactive melt infiltration (RMI), hot pressing (HP), spark plasma sintering (SPS) and pressureless sintering, the advantages and drawbacks of each method are briefly discussed. The future development direction of low-cost manufacturing short carbon fiber reinforced ceramic composites is prospected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号