共查询到17条相似文献,搜索用时 0 毫秒
1.
《Materials Science & Technology》2013,29(7):914-918
AbstractVacuum hot roll bonding of titanium alloy and stainless steel using a nickel interlayer was investigated. No obvious reaction or diffusion layer occurs at the interface between stainless steel and nickel. The interface between titanium alloy and nickel consists of an occludent layer and diffusion layers, and there are the intermetallic compounds (TiNi3, TiNi, Ti2Ni and their mixtures) in the layers. The total thickness of intermetallic layers at the interface between titanium alloy and nickel increases with the bonding temperature, and the tensile strength of roll bonded joints decreases with the bonding temperature. The maximum tensile strength of 440·1 MPa was obtained at the bonding temperature of 760°C, the reduction of 20% and the rolling speed of 38 mm s–1. 相似文献
2.
《Materials Science & Technology》2013,29(11):1278-1284
AbstractThe present paper investigates completely reversed room temperature low cycle fatigue (LCF) behaviour of solution annealed austenitic stainless steel AISI 316L with two different grain sizes of 90 and 139 μm developed by solution annealing treatment at 1050 and 1150°C respectively and at six strain amplitudes ranging between ± 0·375 and ± 1·00%. Complete cyclic hardening has been observed for both the grain sizes. While fine grained steel shows an improvement in cyclic life compared with that of coarse grained steel for strain amplitudes ± 0·375 and ± 0·50%, and perfectly follows the Coffin–Manson (C–M) behaviour within the experimental domain, higher cyclic life with bilinear C–M behaviour is observed in the case of coarse grained steel at ± 0·625% strain amplitude and above. Optical microscopy of fatigue fracture surfaces reveals the formation of martensite on cyclic straining predominantly at higher strain amplitudes. 相似文献
3.
《Materials Science & Technology》2013,29(9):1118-1126
AbstractAISI 316L austenitic stainless steel was deformed at different strain and strain paths. The twin boundaries in the deformed microstructure had two possible origins: decay of original annealing twins and generation of deformation twins. Assuming that rotations of grains, specifically grains on both sides of a twin boundary, are responsible for the twin decay, a simple model was proposed to bring out the domain of relative twin generation. A biaxial strain path, in general, was associated with strong twin generation – an association or dependency linked to the texture estimated values of Taylor factor. Formation of strain induced martensite was also observed to be strain and strain path dependent and was more in biaxial strain path. 相似文献
4.
《Materials Science & Technology》2013,29(3):350-356
AbstractThe tensile flow stress data for a 15Cr - 15Ni - 2.2Mo - Ti modified austenitic stainless steel in the temperature range 300 - 1023 K and in the strain rate range 6.3 × 10-5- 1.3 × 10-2 s-1 was analysed in terms of the Ludwigson and Voce equations. It was found that the Ludwigson equation described the flow behaviour adequately up to the test temperature of 923 K, whereas the Voce equation could be employed over the full temperature range. The peaks/ plateaus observed in the variation of these parameters as a function of temperature and strain rate in the intermediate temperature range have been identified as one of the manifestations of dynamic strain aging (DSA). Also the variation of these parameters with temperature and strain rate could clearly bring out the different domains of DSA observed in this alloy. The work hardening analysis of the flow stress data revealed that, in the DSA regime, the onset of stage III hardening is athermal. 相似文献
5.
《Materials Science & Technology》2013,29(11):1309-1317
AbstractOptical and transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis of bulk extracted precipitate residues were carried out on long term (more than 80 000 h) creep tested (at 1023 K) type 304 austenitic stainless steels with different levels of Ti content to assess the microstructural stability and creep strength. B and Ce were added to the steels to suppress the creep cavitation. Finer Ti(C,N) particles with higher density and narrower size distribution were observed in steels with a higher Ti content, resulting in an increase in the creep rupture strength. However, higher Ti content increased the intergranular precipitation of the σ phase on longer creep exposure, resulting in the increase in creep cavitation and in the decrease in creep rupture strength. The study indicated an optimum level of Ti and {C + (6/7)N} content with the Ti/{C + (6/7)N} ratio close to the stoichiometric value of the Ti(C,N) precipitate particles that should also be close to their solubility limit at the solution heat treatment temperature. 相似文献
6.
《Materials Science & Technology》2013,29(1):76-84
AbstractA response to the chemical or biological contamination of aircraft requires the use of a suitable decontaminant. Among possible chemical decontaminants, vapour phase hydrogen peroxide appears to be a likely candidate in terms of a combination of efficacy, low environmental impact and potential for materials compatibility. The present paper examines the effect of hydrogen peroxide, both in the vapour phase and as a liquid concentrate on two common structural materials used in aviation, namely 2024 and 7075 age hardenable aluminium alloys and on 304 austenitic stainless steel, the latter as employed in galley and lavatory surfaces. The present paper characterises both the effects of hydrogen peroxide on the microstructure of the materials and the impact that decontamination has on the tensile properties and corrosion resistance of these materials. Microstructural effects are both relatively small in magnitude and confined to a region immediately beside the exposed surface. No systematic effect is found on either the tensile properties or the post-exposure corrosion resistance of the three alloys examined. These observations are encouraging in terms of the use of vapour phase hydrogen peroxide for decontamination applications. 相似文献
7.
《Materials Science & Technology》2013,29(10):1317-1325
AbstractA mathematical model has been developed to optimise process parameters for production of API grade steel plates by thermomechanical controlled processing at a plate mill in Bhilai Steel Plant, India. The model comprises the prediction of the microstructural evolution during hot rolling, the subsequent phase transformation, and, finally, the mechanical properties of microalloyed steels. Effects of chemistry and mill parameters on recrystallisation, grain growth, and precipitation kinetics were taken into consideration to describe the metallurgical processes. . The model has been validated through laboratory experiments as well as full-scale rolling at the plate mill. 相似文献
8.
《Materials Science & Technology》2013,29(10):1185-1192
AbstractThe influence of laser surface alloying (LSA) with Cr and Cr + Ni on the corrosion behaviour of type 304L stainless steel (SS) was investigated using potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) in chloride (0·5M NaCl) and acidic (1 N H2SO4) media. Surface alloying was carried out by laser cladding type 304L SS substrate with premixed powders of AISI type 316L SS and the desired alloying elements. The results indicated that Cr surface alloyed specimen exhibited a duplex (γ + α) microstructure with Cr content of ~24 wt-%, whereas Cr + Ni surface alloyed specimen was associated with austenitic microstructure with Cr and Ni contents of ~22 wt-% each. The potentiodynamic polarisation results in chloride solution indicated that LSA with Cr + Ni considerably enhanced the pitting corrosion resistance compared with LSA with Cr alone. In acidic media, such beneficial effects were not observed. Electrochemical impedance spectroscopy results showed an increase in semicircle arc for both chloride and acidic media for both Cr and Cr + Ni clad samples indicating improvement in the oxide film stability compared with untreated specimen. The polarisation resistance was higher and capacitance values of the laser clad specimen were lower than those in the untreated specimen. The microstructural changes and compositional variations produced by LSA are correlated to the corrosion behaviour. 相似文献
9.
《Materials Science & Technology》2013,29(2):178-183
AbstractModern gas turbine engines require high performance materials and coatings to ensure high efficiency. The selection of high performance materials and coatings depends on the nature and concentration of alloying elements. The composition of materials and coatings, in particular, plays a major role in enhancing the life of gas turbine engines by exhibiting good resistance to oxidation and hot corrosion, which are major problems in gas turbine engines. The performances of several superalloys containing different alloying elements and MCrAlY type coatings containing a variety of major and minor alloying elements are described in detail. The effect of major and trace elements on the life of superalloys and coatings in the presence of pure Na2SO4, NaCl and vanadium containing environments is detailed. The relevant reaction mechanisms leading to the failure of superalloys and coatings are discussed. The major factors involved when selecting alloying elements for the preparation of superalloys to manufacture components intended for use under hot corrosion conditions and the selection of appropriate coatings are suggested. Finally, the necessity of innovation of 'smart coatings' to combat both oxidation and hot corrosion is discussed. 相似文献
10.
《Materials Science & Technology》2013,29(12):1459-1468
AbstractThe response to post-weld heat treatment of an 18%Ni (250 grade) gas tungsten arc weld metal has been investigated. The post-weld heat treatments are (a) direct aging at 480°C/3 h/air cooling, (b) solutionising at 815°C/1 h/air cooling+aging at 480°C/3 h/air cooling and (c) homogenisation at 1150°C/1 h/air cooling+solutionising at 815°C/1 h/air cooling+aging at 480°C/3 h/air cooling. Metallographic characterisation of fusion zone revealed pronounced segregation of titanium and molybdenum along the interdendritic and intercellular boundaries. This led, during subsequent aging, to austenite reversion at temperatures much lower than in wrought (unwelded) material. Solutionised treatment at 815°C does not remove the segregation. Homogenisation treatment (1150°C/1 h/air cooling) succeeded in making the composition become homogenised. Mechanical properties including tensile, hardness and impact toughness were evaluated. Tensile test results showed that directly aged weldments exhibited lower strength but higher ductility than the other cases; this was attributed to the presence of reverted austenite. Homogenisation at 1150°C/1 h/air cooling+solutionising at 815°C/1 h/air cooling+aging at 480°C/3 h/air cooling resulted in optimum tensile properties. A substantial increase in fusion zone toughness was observed after homogenisation+solutionising+aged condition due to a decrease in the content of austenite content compared to the directly aged condition. The reduction in microsegregation by diffusion of alloying elements from cell boundaries to the cell during homogenisation treatment is responsible for the decrease in austenite content. 相似文献
11.
《Materials Science & Technology》2013,29(5):641-644
AbstractMechanical tensile and impact toughness tests and critical pitting corrosion temperature (CPT) tests were performed on samples of Duplok 27, a P/M-HIP duplex stainless steel containing copper, after heat treatments simulating industrial heat treatments of large components. It was shown that copper alloying has positive effects on mechanical tensile properties leading to hardening and more uniform deformation. No negative effects of copper alloying on corrosion resistance properties were found. A drastic drop in impact toughness values and CPT of samples cooled at controlled cooling rates is explained by the precipitation of intermetallic secondary phases or their precursors. Lower CPT of a NG-GTAW (narrow gap gas tungsten arc welding) welded joint is explained by the lower level of alloying than that of the base material. The high temperature region of precipitation of intermetallic secondary phases is shifted towards higher temperatures than assumed for Duplok 27 P/M-HIP duplex stainless steel. 相似文献
12.
《Materials Science & Technology》2013,29(1):69-75
AbstractThe effects of heat treatment on the microstructure and bond strength at the interface of explosively welded titanium/304L stainless steel clad have been investigated. The microstructure of the clad interface were examined using optical and scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD) techniques. At 700°C, the formation of intermetallic phases σ and Fe2Ti besides β-Ti were confirmed, while in samples, heat treated at 800°C and 900°C, other intermetallic phases such as λ and FeTi, NiTi, NiTi2 phases were detected in addition to σ and Fe2Ti phases. The shear test results show that the shear strengths of heat treated samples are overall significantly lower than that of stress relieved samples. This could be due to the formation of brittle intermetallic phases at the interface. Despite of formation of the intermetallic phase at 700°C, the shear strength of the sample is still more than the minimum standard amount of 137·9 MPa. It is also observed that the higher the heat treatment temperature, the lower the interface shear strength, which can be explained by the fact that the volume fraction of intermetallics increases with increasing temperature. The shear strength values of heat treated samples are lower than those of diffusion bonded clads. This could be attributed to the fact that the total widths of intermetallic layers achieved in heat treated samples are larger than those of for diffusion bonded ones. 相似文献
13.
Conventional thermo-mechanical treatment (CTMT) and modified thermo-mechanical treatment (MTMT) process were applied for manufacturing a high nitrogen niobium-stabilized 15Cr-15Ni austenitic alloy. CTMT process consists of 5 h of solution treatment at 1270 °C followed by water quenching and subsequent aging at 820 °C for 50 h. MTMT process differs from CTMT process in hot plastic deformation performed immediately after the solution treatment at 1270 °C and longer aging time. Microstructure and creep properties of the steel obtained by both processing routes were investigated. Creep rupture tests at 750 °C showed double increase in rupture time brought about by MTMT process. Examination of crept microstructure by transmission electron microscopy revealed that the improved creep properties in MTMT process were mainly due to improved distribution uniformity of fine nano-sized carbonitride precipitates in the austenitic matrix and that MTMT process has no effects on the number density and distribution of copper precipitates present in the steel. However, the creep ductility in MTMT process drastically reduced comparing to CTMT process. The higher density of grain boundaries due to finer grain recrystallized microstructures and the formation of higher volume fraction of coarser M23C6 precipitates at the boundaries are believed to be the main reason for the lower creep ductility in MTMT process. 相似文献
14.
《Materials Science & Technology》2013,29(10):1226-1233
AbstractThe microstructural parameters (dislocation density, martensite lath width, precipitate diameters, and volume fractions) have been measured for the 9%Cr steel P92 (NF616) after different heat treatments. The austenitising temperatures were 970, 1070, and 1145°C and the tempering temperatures 715, 775, and 835°C. Increasing the austenitising temperature led to an increase in the austenite grain size and in the martensite lath width, but no significant effect on the tensile properties at 20, 600, and 650°C was observed. The creep strength was, however, reduced by tempering at 835°C due to rapid recovery of the martensitic structure with a sharp decrease in dislocation density. The lowest creep strength was found for the P92 steel subjected to a heat treatment that produced a fully ferritic microstructure; the secondary creep rate was four orders of magnitude higher than that of the steel in the usual martensitic condition. 相似文献
15.
针对一种以Al作为主要强化元素的新型马氏体时效不锈钢,通过力学性能测试、光学显微镜观察和透射电子显微分析方法,研究不同的热处理温度对实验钢力学性能和微观组织的影响。结果表明:该实验钢的抗拉强度最高可达1876MPa,屈服强度可达1762MPa,具有良好的强韧性配合。固溶处理后形成了具有高密度位错的细小板条马氏体组织,在时效过程中,马氏体基体上弥散析出的NiAl相使其强度得到大幅度的提升。随着时效温度的提高,NiAl析出相颗粒逐渐长大粗化,从而使强度在到达峰值后迅速下降,出现了过时效现象。实验钢经过820℃固溶+(-70℃)冷处理+540℃时效处理后可获得良好的综合力学性能。 相似文献
16.
The microstructure evolutions and the mechanical properties of the 25Cr-20Ni austenitic stainless steel weld metals with different Nb contents were investigated during the long term aging treatment at 700~?C.M_(23)C_6,Nb(C,N),α-Cr phase and Nb-nitride phase(Z phase)were observed in the microstructures of the aged weld metals.The results showed that theα-Cr phase precipitated in the interdendritic regions of the weld metals after being exposed to~ 700?C for 500 h and the element Nb accelerated the precipitation of theα-Cr phase significantly.The density of theα-Cr phase decreased with the increase of the distance away from the primary Nb(C,N).Additionally,theα-Cr phase showed a crystallographic relationship with the austenitic matrix,■.It was observed that the Z phase precipitated in the periphery of the Nb(C,N)and may replace the Nb(C,N)after long term exposure to high temperature.The transformation of the Nb(C,N)into Z phase suggested that the Z phase had a higher stability than the Nb(C,N)par~ticles at 700?C for long term aging.The tensile strength of the Nb-bearing weld metal showed a continuous decrease at the initial stage of the aging treatment and then went up slightly with the prolonged aging time.However,the elongations and the impact energies of the weld metals decreased monotonously with the increase of the aging time. 相似文献
17.
对采用化学镀方法制得的镀Co空心玻璃微球进行了不同温度的热处理,对其在不同温度热处理下的表面形貌、晶型、电磁参数与吸波性能以及磁性能进行了研究。研究结果发现,随着热处理温度升高,镀层先后出现微区熔融直至较严重的熔融和镀层剥落现象;镀层Co发生由HCP到FCC的晶型转变且转变程度提高。热处理温度对镀Co微球介电常数影响比较显著,对磁导率影响则比较小;在2~18GHz频段,经过800和1000℃热处理的镀Co空心玻璃微球介电常数大幅提高,而磁导率变化不大,电磁波反射率显著降低。镀Co空心玻璃微球矫顽力随热处理温度上升而下降,热处理后镀Co微球磁滞损耗略有下降。可以预测经过800和1000℃热处理的镀Co微球吸波性能会有较大的提高。 相似文献