首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We report on chemical stability and corrosion behavior of highly depolymerized sulfophosphate glasses from the system ZnO–Na2O–SO3–P2O5 in aqueous solution, providing data on weight loss, ion release rates, and modifications of surface topology as a function of time, temperature and pH value. Observations seem consistent with the previously developed structural model of chemical heterogeneity, where cations Na+ and Zn2+ cluster selectively in the vicinity of sulfate and phosphate anions, respectively.  相似文献   

3.
The changes in the structure and phase composition of glasses in the K2O–Nb2O5–SiO2system upon their heat treatment in the temperature range 700–800°C are studied by the small-angle X-ray scattering (SAXS) technique and X-ray powder diffraction. It is demonstrated that the crystallization is the primary process giving rise to microinhomogeneities in glasses due to heat treatment. Nanocrystals of an unidentified niobium-containing phase precipitate in glasses with the formation of regions with a decreased content of potassium and niobium oxides. An increase in the duration of heat treatment at the studied temperatures results in an increase in the size of nanocrystals without change in their phase composition. This is accompanied by the disappearance of diffusion zones, which leads to a decrease in the SAXS intensity in the range of small scattering angles and, correspondingly, to a decrease in the light scattering intensity.  相似文献   

4.
Dielectric ceramics in the BaO–Nd2O3–TiO2–Ta2O5 system were prepared and characterized. The ceramics with tungsten–bronze structure based on the compositions Ba2NdTi2Ta3O15 and Ba5NdTi3Ta7O30 had a high dielectric constant (>100) with a lower frequency-dependency when complete densification was achieved; a low dielectric loss was obtained in the former.  相似文献   

5.
In Na2O–CaO–SiO2–H2O system, systematic investigations of phase and morphology of calcium silicate in hydrothermal conditions were concisely conducted for high-value utilization of silicon resource in high-alumina fly ash (HAFA). The results show that crystal composition and phase may be affected by relatively low concentration of NaOH, and sodium ions are rearranged into the structure to form NaCaHSiO4 and Na2Ca3H8Si2O12 with different C/S ratio at high concentration of NaOH. In addition, phases in wollastonite group possess the morphology of nanofiber. Formation of nanofiber is attributed to the difference of surface energies between axial and radial direction, and higher temperatures lead to easier growth along radial direction. The preparation of C–S–H with different phases and morphologies can guide for the application of silicate solution with high alkalinity with different purposes.  相似文献   

6.
Glass Physics and Chemistry - The effect of tungsten oxide on the crystallization properties of glasses of the 37.5B2O3 22.5La2O3 (40 – x)Nb2O5 xWO3 (where x = 10, 15, 20, 30, 40 mol %)...  相似文献   

7.
We investigated the sintering behavior of Cr2O3–Al2O3 ceramic materials. In our observation of the isothermal shrinkage behavior of Cr2O3–Al2O3 ceramic, the activation energy of sintering reaction was measured to be 102 kJ/mol, that is, the near value of the activation energy of diffusion of Al ions in Al2O3 single crystal. Therefore the diffusion of cations is believed to control the sintering behavior of this material. With the addition of TiO2, (the compound chosen to accelerate the diffusion of cations) to Cr2O3–Al2O3, the sintering behavior was accelerated.  相似文献   

8.
Glass Physics and Chemistry - The growth of nanocrystalization in TeO2–SeO2–Na2O glasses is achieved by the conventional heat treatment method. The influence of Na2O concentration on...  相似文献   

9.
To support commercialization of the MgO–Al2O3–B2O–SiO2-based low-dielectric glass fibers, crystallization characteristics of the relevant glasses was investigated under various heat-treatment conditions. The study focused on the effects of iron on the related thermal properties and crystallization kinetics. Both air-cooled and nucleation-treated samples were characterized by using the differential thermal analysis/differential scanning calorimeter method between room temperature and 1200°C. A collected set of properties covers glass transition temperature (Tg), maximum crystallization temperature (Tp), specific heat (ΔCp), enthalpy of crystallization (ΔHcryst), and thermal stability (ΔT=TpTg). Using the Kinssiger method, the activation energy of crystallization was determined. Crystalline phases in the samples having various thermal histories were determined using powder X-ray diffraction (XRD) and/or in situ high-temperature XRD method. Selective scanning electron microscope/energy-dispersive spectroscopy analysis provided evidence that crystal density in the glass is affected by the iron concentration. Glass network structures, for air-cooled and heat-treated samples, were examined using a midinfrared spectroscopic method. Combining all of the results from our study, iron in glass is believed to function as a nucleation agent enhancing crystal population density in the melt without altering a primary phase field. By comparing the XRD data of the glasses in two forms (bulk versus powder), the following conclusions can be reached. The low-dielectric glass melt in commercial operation should be resistant to crystallization above 1100°C. Microscopic amorphous phase separation, possibly a borate-enriched phase separating from the silicate-enriched continuous phase can occur only if the melt is held at temperatures below 1100°C, that is, below the glass immiscibility temperature. The study concludes that neither crystallization nor amorphous phase separation will be expected for drawing fibers between 1200°C and 1300°C in a commercial operation.  相似文献   

10.
A method for calculating the viscosity from composition and temperature for melts in the R m O n –B2O3–SiO2systems is proposed. The change in the concentrations of structural groups depending on the melt composition is taken into account in calculations. The results of calculations are compared with the experimental data available in the literature on the viscosity of 1200 melts with the use of the SciGlass information system. The root-mean-square deviation between the experimental and calculated characteristic temperatures varies from 30 K (for the glass transition temperature and the Littleton point) to 50 K (for a viscosity of 104P).  相似文献   

11.
Journal of Inorganic and Organometallic Polymers and Materials - This research article focuses on the significant role of Tb2O3 content on the optical properties and radiation shielding performance...  相似文献   

12.
《Ceramics International》2020,46(7):9109-9118
Porous alumina bodies, intended for use as heat-insulating refractory materials, were fabricated by a high-temperature evaporation method and characterized. A series of flux systems was used by adding a third component to Na2O–B2O3 glass in addition to boric acid and sodium carbonate. When SiO2 was added as the third component, the primary alumina particles grew anisotropically, forming a plate-like shape, and the house-of-cards structure was self-organized. The anisotropic growth of alumina platelets was promoted by the solid solution of Si4+ ions in the flux on the α-Al2O3 surface. Furthermore, the bonding between the alumina platelets was strengthened by the high-SiO2-concentration flux. Our typical alumina body had a porosity of 71.5%, a compressive strength of 3.7 MPa, a shrinkage rate of 2.6% when reheated at 1700 °C, and a thermal conductivity of 0.24 W m−1•K1 at 1000 °C. Thus, the present alumina bodies are expected to find application as high-performance heat-insulating refractory materials.  相似文献   

13.
《应用陶瓷进展》2013,112(4):203-209
Abstract

Glass samples in Li2O–SiO2–CaO–P2O5–CaF2 system with different contents of P2O5, CaO and CaF2 in relative ratios responded to fluoroapatite (FA) composition (referred to P2O5 addition) have been prepared and heat treated at 550 and 750°C to obtain glass ceramics. Bioactivity of all samples has been proved in vitro by the presence of new layer of apatite-like phases formed after soaking in simulated body fluid (SBF). The development and the apatitic character of created layers have been demonstrated by Fourier transform infrared analysis. Scanning electron microscopy and electron probe microanalysis have demonstrated that the density and the thickness of new layer depend on P2O5 content, crystallisation temperature and immersion time. The bioactivity has been enhanced by P2O5 addition as well in the case of the base glasses as in the case of glass ceramics. The additional heat treatment appeared to inhibit the bioactive behaviour, though the longer SBF acting leads to the additional formation of apatite-like layer. The mechanical properties, expressed as Vicker hardness, have been found higher and increasing with P2O5 in glass ceramics treated at 750°C comparatively with base glass samples and the highest value of 7˙37 GPa has been achieved by 14 wt-%P2O5 addition. The same content of P2O5 in glass ceramics heat treated at 550°C resulted in a decrease in hardness to a minimum value from all samples. The increase and decrease in hardness responded to development and suppression of crystallisation respectively. The inhibition of crystallisation has been affected by the presence of 'amorphous' FA according to X-ray diffraction and differential thermal analysis results.  相似文献   

14.
李宏彦  朱志梁  杨凤丽  庄卫东 《硅酸盐学报》2012,40(4):577-578,579,580,581,582
采用体积电阻率法、红外光谱、X射线衍射研究了V2O5–P2O5–Sb2O3–Bi2O3体系玻璃的电性能、结构和析晶状况。结果表明:随着Sb2O3取代部分V2O5,玻璃的体积电阻率显著升高,电子分别以V4+和V5+为中心不停地进行电子跃迁的电子导电特征得到明显抑制,15%Sb2O3、20%Sb2O3玻璃的体积电阻率可以达到实用水平。当Sb2O3取代V2O5进入钒酸盐玻璃中,玻璃结构得到增强,析晶状况得到改善,削弱了玻璃的导电能力。  相似文献   

15.
Homogeneous transparent optical glass–ceramics precipitated with unique nonlinear crystals are promising materials for photonic applications. We have utilized heat treatment method to prepare transparent ZnO–Bi2O3–B2O3 glass–ceramic containing Bi2ZnB2O7 nonlinear nanocrystals. A large third-order nonlinear susceptibility χ(3) of glass–ceramic is measured by Z-scan technique, which mainly attributed to unique [BiO6] and [B2O5] units in Bi2ZnB2O7 crystal structure and the quantum size effect of nanoparticles. The discovery is of great potential in the application of nonlinear optical integrated devices.  相似文献   

16.
《Ceramics International》2020,46(5):6205-6211
This study utilized the single hot thermocouple technique to examine the dissolution behavior of lumped magnesium oxide (MgO) in CaO–Al2O3–SiO2 ternary slags. The aluminum oxide (Al2O3) content in the slag (C/S = 1) varied from 10% to 30%; the MgO sphere with a diameter of 1 mm was placed in molten slags at 1,550 °C. Results showed that the dissolution rate decreased as the Al2O3 content increased up to 20%. Over 20% Al2O3, MgAl2O4 was formed at the interface of MgO and it did not fully melt at 30% Al2O3. The dissolution behavior and the formation of MgAl2O4 were analyzed by a phase diagram provided by Factsage 7.0 software. In the case of less than 20% Al2O3 content, apparent sphere radii were measured; the shrinking core model was then applied to understand the dissolution mechanism. The dissolution rate of both slags was controlled by boundary layer diffusion. The dissolution rate at 20% Al2O3 slag appeared to fit the behavior to the boundary layer diffusion, although it deviated during the middle stage of the dissolution because of MgAl2O4 formation. The 10% Al2O3 slag fitted well to the boundary layer diffusion curve; the obtained diffusion coefficient was 0.94 × 10−9 m2/s.  相似文献   

17.
The La2O3–B2O3 (LB) addition, synthesized using the traditional solid-state reaction process, was chosen as a novel sintering aid of the low temperature co-fired CaO–B2O3–SiO2 (CBS) glass–ceramic. The effects of LB on the flexural strength and microwave dielectric properties have been investigated. The LB addition promotes the crystallization of the CaSiO3 but high amount of the LB addition leads to the formation of more pores. The CBS sample with 4 wt% LB addition sintered at 850 °C for 15 min shows good properties: flexural strength = 193 MPa, ?r = 6.26 and loss = 9.96 × 10?4 (10 GHz).  相似文献   

18.
19.
The possibility of using vanadium pentoxide (V2O5) as a catalyst in rechargeable lithium–oxygen (Li–O2) batteries was studied. A V2O5-carbon composite was cast onto Ni foam to form a cathode. Electrochemical cells designed based on the flat cell manufactured by Hohsen Corporation were fabricated. The initial discharge capacity was 715 mA?h?g?1, and the maximum discharge capacity reached 2,260 mA?h?g?1 during the twelfth cycle. The cell had high capacity retention during cycling (1.24?% during cycles 2–8). V2O5 acted as a catalyst as well as an active material, improving the specific capacity and capacity retention of the non-aqueous Li–O2 cell more effectively than do other materials.  相似文献   

20.
The structural role of copper ions in melts (glasses) of the Na2O–SiO2–Cu2O–CuO system is analyzed in the framework of the acid–base concept with due regard for the geometric (the radius ratio for Cu2(1)+ and O2– ions) and energy (the mean enthalpies of the Cu2(1)+–O bonds) factors. It is demonstrated that copper ions in the structure fulfill the function of modifier cations. In these melts, the Cu1+–Cu2+ redox equilibrium can be described without regard for the formation of [Cu2(1)+O4/2]2(3)– ionic complexes (which could be incorporated into the structure of silicon–oxygen anions) and [Cu2+O b/k ]2 – b/k polyhedra providing the interaction between Cu2+ ions and anions. The influence of the formation of these polyhedra on the redox equilibrium is considered within the formalism of chemical thermodynamics. The composition dependence of the oxygen ion exponent pO is measured by an electromotive force (emf) technique. The ratio between the numbers of copper atoms with different valences is determined by chemical analysis. The experimental data obtained are in agreement with the theoretical inferences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号