首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

The influence of different soaking temperatures in the range 973–1623 K (below Ac 1 to above Ac 4) before oil quenching and tempering, on the microstructure, hardness, grain size, and tensile properties of modified 9Cr–1Mo steel has been studied. This was done in an effort to assess the tensile behaviour of the different microstructures likely to be encountered in the heat affected zone of a fusion welded joint of the steel. The steel developed predominantly martensitic structure after quenching. Soaking of steel in the intercritical temperature range (between Ac 1 and Ac 3) reduced the prior austenitic grain size and hardness. Soaking temperatures above Ac 3 increased the grain size and hardness of the steel until the formation of δ ferrite at temperatures above Ac 4. The δ ferrite formation at soaking temperatures above Ac 4 reduced the grain size and hardness of the steel. The tensile strength of the steel exhibited a minimum for soaking in the intercritical temperature range where the ductility was highest. Strength increased and ductility decreased with further increases in soaking temperatures above Ac 3. The formation of δ ferrite at soaking temperatures above Ac 4 improved the ductility. The tensile properties have been correlated with the microstructures.  相似文献   

2.
Abstract

Extensive service at 540°C led to changes in the composition, morphology, size, and distribution of the original carbides that were present in the pre-service steel. This service did not seem to introduce weakening voids along grain boundaries. At low creep stress levels the stress versus Larson–Miller parameter (LMP) curve of the postservice steel indicates better performance than the lower bound of the pre-service steel. The opposite performance was found at high creep stress levels. The service led to only a slight reduction in fracture toughness of the steel. Exposure to post-service accelerated creep tests led to further gradual reduction in fracture toughness. The reductions in fracture toughness were proportional to the creep strain and duration. The formation of spherical carbides during the accelerated creep tests promoted void formation during the fracture process and thus contributed to the observed additional reduction in fracture toughness.  相似文献   

3.
Abstract

The measurement of ultrasonic velocity of 9Cr-1Mo ferritic steel thermally aged at 793 and 873 K exhibited four distinct regimes in the variation of ultrasonic velocity with aging time. These different regimes have been correlated with the progressive evolution and coarsening of precipitate microstructure studied using TEM and microhardness measurements. The study revealed that ultrasonic velocity can be used to examine the secondary precipitation in the steel and the use of this technique as such can be extended to the health assessment of a component during service.  相似文献   

4.
《Materials Letters》2004,58(1-2):94-98
Aging was performed to understand the microstructural degradation in 2.25Cr–1Mo steel. Microstructural parameters (mean equivalent carbide size, number of carbides per unit area), mechanical properties (UTS, Vickers hardness) and magnetic properties (coercivity, remanence) were measured to investigate the relationship among these parameters. The magnetic coercivity and remanence were observed to decrease rapidly in the initial 1000 h of aging time and then decrease slowly thereafter. Linear correlations between mechanical and magnetic properties were found.  相似文献   

5.
Distinct regions such as weld metal, heat-affected zone (HAZ) and base metal of P9 steel weld joints fabricated by various welding processes were investigated using impression creep testing. Smaller prior austenitic grain size, lower density of precipitates and dislocations resulted in faster recovery and higher creep rate of HAZ in comparison to the weld and base metal. Compared to base metal, shielded metal arc weld (SMAW) and activated tungsten inert gas (A-TIG) weld of the P9 steel weld joints exhibited better resistance to creep and displayed higher activation energy due to their coarser prior austenite grain size. A-TIG HAZ exhibited superior creep properties compared to the SMAW and TIG HAZ due to the presence of higher number density of precipitates.  相似文献   

6.
Abstract

Evaluation of the creep behaviour of 2.25Cr–1Mo and 9Cr–1Mo ferritic steel base metals, 9Cr–1Mo steel weld metal, and 2.25Cr–1Mo/9Cr–1Mo ferritic–ferritic dissimilar weld joints has been carried out at 823 K in the stress range 100–260 MPa. The weld joint was fabricated by shielded metal arc welding using basic coated 9Cr–1Mo electrodes. Investigations of the microstructure and hardness variations across the joint in the as welded, post-weld heat treated (973 K/1 h), and creep tested conditions were performed. The heat affected zone (HAZ) in both the steels consisted of a coarse prior austenitic grain region, a fine prior austenitic grain region, and an intercritical structure. In the post-weld heat treated condition, a white etched soft decarburised zone in 2.25Cr–1Mo steel base metal and a black etched hard carburised zone in 9Cr–1Mo steel weld metal around the weld fusion line developed. Hardness troughs also developed in the intercritical HAZ regions of both the steels. The width of the carburised and decarburised zones and hardness differences of these zones were found to increase with creep exposure. The 9Cr–1Mo steel weld metal showed higher creep strength compared to both the base metals. The 9Cr–1Mo steel base metal exhibited better creep resistance than the 2.25Cr–1Mo steel base metal at lower applied stresses. The dissimilar joint revealed lower creep rupture strength than both the base metals and weld metal. The creep strain was found to concentrate in the decarburised zone of 2.25Cr–1Mo steel and in the intercritical HAZ regions of both the steels. Creep failure in the stress range examined occurred in the intercritical HAZ of 2.25Cr–1Mo steel even though this region showed higher hardness than the decarburised zone. Extensive creep cavitation and cracks were observed in the decarburised zone.  相似文献   

7.
This study reports the fatigue behaviour of 2.25Cr1MoV steel under low cycle fatigue (LCF) loading and creep-fatigue interaction (CFI) loading at 355, 455 and 555 °C. Various hold durations up to 600 s were introduced in the CFI tests at the peak/valley strain under strain or stress control. In LCF tests, the steel exhibited remarkable strengthening at 455 °C, which can be ascribed to the effect of dynamic strain aging. In CFI tests, tensile holds were found more damaging than compressive holds but considerably less harmful than the combined tensile-compressive holds. A modified plastic strain energy approach based on the damage mechanisms was proposed to predict fatigue life under LCF and CFI conditions. The predictions obtained compared very favourably with the experimental results.  相似文献   

8.
Abstract

The material 2.25Cr–1Mo alloy steel has been used extensively for high temperature applications in power generation plant for over five decades owing to its long term creep resistance. It has been recognised that the lifetime of a high temperature component containing pre-existing defects is dependent not only upon the material's crack propagation resistance but also upon an incubation period before crack growth during which a damage zone ahead of the defect tip develops. The extent of the damage occurring during this incubation period, before crack propagation, is dependent upon the stress intensity at the defect tip, the ductility of the material, and the microstructure in the damage zone. The present paper details a technique for quantifying the early stages of creep damage using image analysis in the scanning electron microscope, and compares the degree, distribution, and orientation of creep damage occurring in two microstructural variables of 2.25Cr–1Mo alloy steel. The paper describes the procedures necessary for generating consistent and reproducible quantitative analysis results, including specimen preparation, defect detection, and measurement criteria. The image analysis process, its accuracy, and application to the study of creep damage mechanisms occurring ahead of defects are discussed.  相似文献   

9.
By using stress dependent creep ductility and strain rate model in a ductility exhaustion based damage model, the creep crack initiation (CCI) behaviour in Cr–Mo–V steel specimens with different geometries and dimensions (different constraints) over a wide range of C* has been predicted by finite element simulations. The predicted creep crack initiation time agree well with the existing experimental data. In low and transition C* regions, the constraint induced by specimen geometries and dimensions has obvious influence on CCI time. With increasing constraint level of specimens, the CCI time decreases due to the increase of stress triaxiality ahead of crack tip. Different CCI trends and constraint effects on CCI behaviour in a wide range of C* result from the interaction of crack-tip stress state and stress dependent creep ductility of the steel. It is suggested that in CCI life assessments of high temperature components, the long-term CCI time data at low C* region should be obtained and used, and the constraint effects need to be considered by using constraint dependent CCI data.  相似文献   

10.
Abstract

Tensile tests have been carried out on 9Cr–1·8W–0·5Mo–VNb steel (grade 92) over wide ranges of temperature (300–923 K) and strain rate (3×10?3–3×10?5 s?1). The tensile strength of the steel decreased slowly with temperature at relatively lower temperature range, whereas rapidly in the higher temperature range with a plateau in the intermediate temperature range. The decrease in strain rate decreased the tensile strength of the steel both at lower and higher temperature ranges. Elongation to fracture and reduction in area increased with increase in temperatures and decrease in strain rate at higher temperature regime with a plateau in the intermediate temperature regime. The ductile mode of tensile failure has been observed in the investigated temperatures and strain rates. The plateau in the variation of tensile strength with temperature, the negative strain rate sensitivity of tensile strength and minimum in ductility of the steel in the intermediate temperature range are considered as a consequence of dynamic strain ageing. The rapid decrease in tensile strengths and increase in ductility at high temperatures have been attributed to the dynamic recovery.  相似文献   

11.
Abstract

The synergism between hydrogen embrittlement and temper embrittlement has been investigated in a 9Cr–1Mo martensitic steel. Measurements of tensile ductility were used to monitor the development of embrittlement with increasing hydrogen content in material as tempered and aged for up to 5000 h at 500 or 550°C. A detailed examination was made of associated changes in fracture mechanism, precipitate microstructure, and interfacial and precipitate chemistry. A strong interaction between hydrogen and temper embrittlement was observed. Both types of embrittlement in isolation reduced tensile ductility by promoting a ductile interlath fracture mechanism: ‘chisel fracture’. Hydrogen and temper embrittlement acted synergistically to reduce ductility further by the promotion of brittle intergranular fracture and transgranular cleavage. The dominant factor controlling the interaction was the precipitation of a brittle intermetallic Laves phase containing phosphorus in solution. Phosphorus segregated to interfaces was considered to make an important, but secondary, contribution to the embrittlement observed.

MST/791  相似文献   

12.
The effect of tungsten–molybdenum (W–Mo) balance on creep life has been investigated for five heats of martensitic 9Cr steel with 1.5 % Mo equivalent (= 1/2W + Mo) at 600, 650 and 700°C. The combination of W and Mo concentrations in the present steel is 3W–0Mo, 2.8W–0.1Mo, 2.4W–0.3Mo, 1.8W–0.6Mo and 0W–1.5Mo. The time to rupture tr exhibits a monotonous increase with increasing the W–Mo balance parameter 1/2W/(1/2W + Mo), namely, with increasing W concentration and concomitantly with decreasing Mo. The increase in tr with increasing 1/2W/(1/2W + Mo) becomes less significant at long times. The precipitation of Fe2(W,Mo) Laves phase takes place preferentially at prior austenite grain boundaries during creep, which enhances the grain boundary (GB) precipitation hardening. The amount of Laves phase increases with increasing 1/2W/(1/2W + Mo). The coarsening of Laves phase takes place at long times during creep, which reduces the GB precipitation hardening.  相似文献   

13.
14.
Abstract

The microstructure and mechanical properties of a medium carbon Cr–Ni–Mo–Nb steel in quenched and tempered conditions were investigated using transmission electron microscopy (TEM), X-ray analysis, and tensile and impact tests. Results showed that increasing austenitisation temperature gave rise to an increase in the tensile strength due to more complete dissolution of primary carbides during austenitisation at high temperatures. The austenite grains were fine when the austenitisation temperature was <1373 K owing to the pinning effect of undissolved Nb(C,N) particles. A tensile strength of 1600 MPa was kept at tempering temperatures up to 848 K, while the peak impact toughness was attained at 913 K tempering, as a result of the replacement of coarse Fe rich M3C carbides by fine Mo rich M2C carbides. Austenitisation at 1323 K followed by 913 K tempering could result in a combination of high strength and good toughness for the Cr–Ni–Mo–Nb steel.  相似文献   

15.

Creep resistant low-alloyed 2.25Cr-1Mo-0.25V steel is typically applied in hydrogen bearing heavy wall pressure vessels in the chemical and petrochemical industry. For this purpose, the steel is often joined via submerged-arc welding. In order to increase the reactors efficiency via higher operating temperatures and pressures, the industry demands for improved strength and toughness of the steel plates and weldments at elevated temperatures. This study investigates the influence of the post weld heat treatment (PWHT) on the microstructure and mechanical properties of 2.25Cr-1Mo-0.25V multi-layer weld metal aiming to describe the underlying microstructure-property relationships. Apart from tensile, Charpy impact and stress rupture testing, micro-hardness mappings were performed and changes in the dislocation structure as well as alterations of the MX carbonitrides were analysed by means of high resolution methods. A longer PWHT-time was found to decrease the stress rupture time of the weld metal and increase the impact energy at the same time. In addition, a longer duration of PWHT causes a reduction of strength and an increase of the weld metals ductility. Though the overall hardness of the weld metal is decreased with longer duration of PWHT, PWHT-times of more than 12 h lead to an enhanced temper resistance of the heat-affected zones (HAZs) in-between the weld beads of the multi-layer weld metal. This is linked to several influencing factors such as reaustenitization and stress relief in the course of multi-layer welding, a higher fraction of larger carbides and a smaller grain size in the HAZs within the multi-layer weld metal.

  相似文献   

16.
17.
The paper deals with the fracture analysis of thermally exposed 9Cr–1Mo ferritic steel after tensile and impact testing at room temperature. The temperatures of the thermal expositions were 580, 620, and 650 °C, respectively. The duration of annealing experiments varied from 500 to 5000 h. The influence of thermal expositions on Vickers hardness as well as tensile properties was found to be negligible. On the other hand, remarkable effects of the annealing on room temperature impact toughness were observed. Fracture behaviour of the 9Cr–1Mo steel is strongly affected by the presence of precipitates of secondary phases. Fracture surfaces of tensile samples indicate mainly transgranular dimple fracture mechanism. By contrast, the fracture mode of the samples after impact testing is more complex. It shows both – ductile dimple tearing as well as inter-lath decohesion.  相似文献   

18.
Abstract

Tensile tests were performed on specimens in quenched and tempered and thermally aged conditions over a wide temperature range (300–873 K) to assess the occurrence of serrated flow, a manifestation of dynamic strain aging (DSA), in 9Cr–1Mo ferritic steel, with an emphasis on the influence of prior thermal aging on serrated yielding. The alloy exhibited jerky/serrated flow in the load–elongation curves at intermediate temperatures. Types A, B, and C serrations were observed, depending on the test temperature and applied strain rate. The apparent activation energy of 83 kJ mol-1 measured for serrated flow suggests that diffusion of an interstitial solute such as carbon is responsible for dynamic strain aging in 9Cr–1Mo steel. Prior thermal aging at 793 K for 5000 h and at 873 K for 1000 and 5000 h resulted in a significant decrease in the height of serrations, i.e. the magnitude of the stress drop, as well as an increase in the critical strain for the onset of serrations. Both of these observations indicate reduced propensity to DSA as a result of increased precipitate sinks as well as a reduced carbon concentration in solid solution owing to an increased density of carbides in the thermally aged conditions. Reduced propensity to DSA resulted in a significant reduction in the strength values at intermediate temperatures.  相似文献   

19.
The microstructure and tensile properties of a metal injection molding 0.23%C Co–Cr–Mo alloy (F75 alloy) were investigated. The as-sintered microstructure contains a significant amount of carbides, and is modified by solution annealing, the main effect being to reduce the amount of carbides. Ductility and ultimate tensile strength increase significantly, but yield strength decreases with solution annealing. Aging causes both intragranular and intergranular precipitation, which increases hardness and yield strength but decreases ductility excessively. In both as-sintered and solution-annealed conditions, the material displays noticeable work hardenability. By sintering at 1300 °C and solution annealing at 1220 °C, 440 MPa yield strength and 25% elongation at fracture are obtained.  相似文献   

20.
Abstract

Segregation of phosphorus and molybdenum to grain boundaries in a commercial grade of 2·25Cr–1Mo steel subjected to different heat treatments has been examined using a field emission gun scanning transmission electron microscope with energy dispersive X-ray microanalysis. The results indicate that P and Mo concentrations at prior austenite grain boundaries increase with aging time. This follows the prediction of McLean's equilibrium segregation model, when modified to take account of the interaction energy between phosphorus and molybdenum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号