首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The microstructural parameters (dislocation density, martensite lath width, precipitate diameters, and volume fractions) have been measured for the 9%Cr steel P92 (NF616) after different heat treatments. The austenitising temperatures were 970, 1070, and 1145°C and the tempering temperatures 715, 775, and 835°C. Increasing the austenitising temperature led to an increase in the austenite grain size and in the martensite lath width, but no significant effect on the tensile properties at 20, 600, and 650°C was observed. The creep strength was, however, reduced by tempering at 835°C due to rapid recovery of the martensitic structure with a sharp decrease in dislocation density. The lowest creep strength was found for the P92 steel subjected to a heat treatment that produced a fully ferritic microstructure; the secondary creep rate was four orders of magnitude higher than that of the steel in the usual martensitic condition.  相似文献   

2.
Abstract

The influence of inter critical annealing at 730°C on the impact properties and strength of C–Mn–Al–Nb steels has been examined. For low Mn (0·56%), Nb steels, intercritical annealing resulted in improved impact performance and the impact transition temperature (ITT) was reduced by as much as 35 K with no change in strength. The improvement in impact performance is considered to be due to Mn segregating to the α/γ boundaries leading to refinement of the grain boundary carbides. This refinement increased with holding time at 730°C in accordance with an increased grain boundary segregation of Mn. Strength was not influenced because grain size remained unchanged on intercritical annealing. The improvement in impact behaviour was greater the longer the holding time at 730°C but was significant even after 15 min. Improvements occurred both on cooling from the austenitising temperature (9·20°C) to 730°C and on heating from room temperature to 730°C, the latter heat treatment being the more beneficial. For higher Mn (1·4%), Nb steels, improvements in impact performance resulting from intercritical annealing depended on cooling rate. Again, the Mn build-up in the y increases with time of intercritical annealing. Owing to the initial overall higher Mn level and finer grain size, the steels were susceptible to martensite formation if the cooling rate was too high. At a cooling rate of 40 K min - 1, improvements in impact behaviour occurred only after short intercritical annealing times (30 min) when only a small amount of martensite had formed. Long times caused a serious deterioration in impact behaviour due to the presence of high volume fractions of martensite. Slow cooling (1 K min?1), however, ensured ferrite–pearlite structures and significant improvements in impact behaviour (20–60 K reductions in ITT) were noted on intercritical annealing with no change in strength. The short holding times required to achieve an improvement in impact behaviour in these fine grained steels are encouraging for the possible commercial exploitation of this heat treatment.

MST/1382  相似文献   

3.
The influence of aluminum on the microstructure and tensile properties of 5Cr5MoV was systematically investigated for improving the mechanical properties at room temperature. Microstructure was characterized by optical microscope (OM), scanning electron microscopy (SEM), field-emission transmission electron microscopy (FE-TEM), and additionally the uniaxial tensile tests were performed on a MTS-810 testing system. Tensile strength as a function of aluminum concentration exhibits an obvious two-stage characteristic. In stage I, 5Cr5MoV is continuously strengthened with the increase of aluminum, mainly owing to the refinement of lath martensite, the precipitation of small carbides and the presence of fine twins in martensite. The maximum tensile strength is 1303 MPa at the aluminum concentration of 1.63 wt.%. In stage II, the tensile strength rapidly drops down with the excessive addition of aluminum due to both the presence of large carbides at the boundaries between ferrite and martensite and the excessive ductile phase of irregular ferrites. As a result, the appropriate addition of aluminum can improve the mechanical properties of 5Cr5MoV by introducing the cryptocrystalline martensite as well as the dispersive polygonal ferrite in the microstructure.  相似文献   

4.
Abstract

The microstructure and mechanical properties of a medium carbon Cr–Ni–Mo–Nb steel in quenched and tempered conditions were investigated using transmission electron microscopy (TEM), X-ray analysis, and tensile and impact tests. Results showed that increasing austenitisation temperature gave rise to an increase in the tensile strength due to more complete dissolution of primary carbides during austenitisation at high temperatures. The austenite grains were fine when the austenitisation temperature was <1373 K owing to the pinning effect of undissolved Nb(C,N) particles. A tensile strength of 1600 MPa was kept at tempering temperatures up to 848 K, while the peak impact toughness was attained at 913 K tempering, as a result of the replacement of coarse Fe rich M3C carbides by fine Mo rich M2C carbides. Austenitisation at 1323 K followed by 913 K tempering could result in a combination of high strength and good toughness for the Cr–Ni–Mo–Nb steel.  相似文献   

5.
Abstract

Measurements of 0·2% proof stress, ultimate tensile strength, elongation, and impact energy are presented for low Mn, Cu iron and low Mn, Ni–Cu iron as a function of austempering time, austempering temperature, and austenitising temperature. The mechanical properties show optimum values at times corresponding to the processing window derived from kinetic measurements. Austempering temperature is shown to influence the properties significantly and by varying the austempering temperature most of the grades of the standard ASTM A897M: 1990 can be achieved with the irons studied. Austenitising temperature is shown to influence the elongation and impact energy significantly at higher austempering temperatures and it is possible by lowering the austenitising temperature to open the processing window at a particular austempering temperature and improve the mechanical properties.

MST/1899  相似文献   

6.
7.
This study describes the correlation between microstructure and mechanical properties of an ultra-high-strength Fe86.7Cr4.4Mo0.6V1.1W2.5C4.7 (at.%) alloy manufactured under high cooling rates and pure conditions. The applied preparation conditions promote the formation of non-equilibrium phases such as martensite, retained austenite and special carbides already in the as-cast state. The carbides form a 3-dimensional skeleton-like structure between the retained austenite and the martensite. This hard and finely ramified carbide network distributed throughout the entire ingot is a specific characteristic of this alloy and important for its excellent mechanical properties. The material exhibits extremely high engineering compression strength of almost 5500 MPa combined with a large compression strain of about 23% due to deformation-induced martensite formation. Furthermore, the alloy possesses a high hardness and tensile strength in the as-cast condition. This combination of mechanical properties leads to an outstanding engineering material for a variety of structural applications in the automotive and tool manufacturing industry.  相似文献   

8.
Abstract

The effect of austenitising temperature on the microstructure, mechanical properties, and dimensional stability of a spheroidal graphite iron containing copper and nickel has been investigated. It was found that as the temperature increased the amount of carbon taken into solution by the austenite increased thus reducing the driving force of the original austenite to bainitic ferrite and high carbon austenite. As a consequence, the amount of retained austenite increased, but its stability decreased. This placed an upper limit on the austenitising temperature and on the amount of retained austenite permissible. All properties other than hardness showed maximum values after austenitising at 900°C. It was also found that increasing the solution treatment temperature increased the dimensional stability.

MST/1116  相似文献   

9.
An as-received (AR) DIN 22NiMoCr37 nuclear reactor pressure vessel steel has been heat treated for 1 h at austenitising temperatures of 1373 and 1473 K to obtain different austenite grain sizes. After austenitising, the samples were water quenched, tempered for 2 h at 923 K, water quenched and then held isothermally at 793 K for 180 h before final air-cooling. The AR condition had a tempered bainite microstructure and a prior austenite grain size of 30 μm, whereas the heat treated conditions were tempered martensite and had a prior austenite grain size of approximately 100 μm for the 1373 K condition and ‘extraordinary’ large austenite grains (>1 mm diameter) for the 1473 K condition. Their low temperature fracture properties were determined and were related to the susceptibility to segregation induced embrittlement. Despite the heat treated conditions having a larger prior austenite grain size compared to the AR condition, at a given testing temperature, the tempered martensitic 1373 K condition generally exhibited higher strength and higher fracture toughness values at 123 K. The heat treated conditions generally exhibited higher local fracture stress (σf) values in 0.2 mm blunt notch SE(B)-0.4T specimens at 123 and 77 K.  相似文献   

10.
Abstract

Austempering kinetic measurements and mechanical property measurements are presented for a compacted graphite iron of composition Fe-3.4C-3.5Si-0.25Mn-0.50Mo-0.50Ni (wt-%) austempered at 375°C after austenitising at 890 and 940°C. Analysis of the austempering kinetics shows that alloying elements have a similar effect on the processing window as in ductile irons. The mechanical properties show optimum values at austempering times within the processing window. However, the graphite morphology limits the mechanical property enhancement achieved by austempering. Nevertheless, it is possible to double the strength of the as cast compacted graphite iron without loss in ductility.  相似文献   

11.
Abstract

The microstructural evolution in (2–15)Cr–2W–0·1C (wt-%) firritic steels after quenching, tempering, and subsequent prolonged aging was investigated, using mainly transmission electron microscopy. The steels examined were low induced radioactivation ferritic steels for fusion reactor structures. With increasing Cr concentration, the matrix phase changed from bainite to martensite and a dual phase of martensite and δ ferrite. During tempering, homogeneous precipitation of fine W2C rich carbides occurred in bainite and martensite, causing secondary hardening between 673 and 823 K. With increasing tempering temperature, dislocation density decreased and carbides had a tendency to precipitate preferentially along interfaces such as bainite or martensite subgrain boundaries. During aging at high temperature, carbides increased in size and carbide reaction from W2C and M6C to stable M23C6 occurred. No carbide formed in δ ferrite. The precipitation sequence of carbides was analogous to that in conventional Cr–Mo steels.

MST/1049  相似文献   

12.
杨智凯  柏鉴玲  张欣悦 《材料工程》2022,50(12):135-142
基于激光选区熔化(selective laser melting,SLM)技术,采用加热打印基板和低功率慢扫描的打印策略,制备了近全致密、低缺陷的高速钢样品;对比分析了固溶淬火及1~4次高温回火等热处理工艺对高速钢显微组织及力学性能的影响。结果表明:SLM极高的熔融/冷却速率产生了细晶奥氏体组织,解决了高速钢中常见的粗大莱氏体组织和网状碳化物问题。固溶淬火处理后高速钢组织由马氏体和残余奥氏体组成。随后在数次高温回火过程中,高速钢逐渐向回火马氏体转变,并析出大量微米级和纳米级MC型碳化物。在马氏体相变强化和MC型碳化物沉淀强化作用下,固溶淬火+3次回火的Tempered-Ⅲ样品硬度60HRC,抗弯强度3621 MPa,弯曲断裂应变为10.1%,获得硬度、强度和韧性匹配较佳的综合性能。继续增加回火次数则导致部分碳化物长大,使得高速钢弯曲断裂应变有所降低。通过SLM技术结合固溶淬火+高温回火,能够充分发挥细晶强化、相变强化和沉淀强化效果,为高强高韧复杂形状高速钢零件的快速制备提供了新途径。  相似文献   

13.
Abstract

X-ray diffraction, optical microscopy, and hardness measurements were used to determine the austenitising kinetics of an alloyed ductile iron containing 0·67%Mn, 0·25%Mo, and 0·25%Cu, during austempering at 285 and 375°C after austenitising at 870, 900, and 920°C. The austenitising kinetics show that 120 min is sufficient time to produce afully austenitic matrix. The stage I reaction during austempering occurs in two distinct steps: first in the eutectic cell and then in the intercellular areas. Decreasing the austenitising temperature is shown to increase the driving force for the stage I reaction but to have only a small effect on the stage II kinetics. Decreasing the austenitising temperature results in a more uniform austempered microstructure and reduces the amount of martensite in the structure. These changes shift the heat treatment processing window for high Mn irons to shorter timesfor austempering at 285°C and come close to, but do not open the processing window at 375°C.

MST/3117  相似文献   

14.
To further improve the mechanical performance of a new alloyed austempered ductile iron(ADI), deep cryogenic treatment(DCT) has been adopted to investigate the effect of DCT time on the microstructure and mechanical behaviors of the alloyed ADI Fe-3.55 C-1.97 Si-3.79 Ni-0.71 Cu-0.92 Mo-0.64 Cr-0.36 Mn-0.30 V(in wt.%). With increasing the DCT time, more austenite transformed to martensite and very fine carbides precipitated in martensite in the extended period of DCT. The amount of austenite decreased in alloyed ductile irons, while that of martensite and carbide precipitation increased. The alloyed ADI after DCT for 6 h had the highest hardness and compressive strength, which can be attributed to the formation of more plate-like martensite and the finely precipitated carbides. There was a gradual decrease in hardness and compressive strength with increasing the DCT time to 12 h because of the dissolution of M3 C carbide. After tempering, there was a decrease in mechanical properties compared to the direct DCT sample, which was caused by the occurrence of Ostwald ripening of precipitated carbides. The optimum wear resistance was achieved for the alloyed ADI after DCT for 6 h. The wear mechanism of the alloyed ADI in associating with DCT is mainly consisted of micro-cutting wear and some plastic deformation wear.  相似文献   

15.
The present work was taken up to study the influence of austenitising temperature on the formation of strain-induced martensite in austempered ductile iron. Ductile iron containing 1.5 wt.% nickel, 0.3 wt.% molybdenum and 0.5 wt.% copper was subjected to austempering treatments which consisted of three austenitising temperatures, namely 850, 900 and 950 °C, and three austempering temperatures, namely 300, 350 and 400 °C. Tensile tests were carried out under all the heat-treatment conditions and strain-hardening behaviour was studied by applying Hollomon equation. Microstructures were studied by optical microscopy and X-ray diffraction. It was found that increasing austenitising temperature increased the tendency for the formation of strain-induced martensite at all the austempering temperatures.  相似文献   

16.
Abstract

The effects of solution treatment (ST) temperature (1073–1473 K) on the prior austenite grain size, microstructure, and mechanical properties of a 2000 MPa grade 18%Ni Co free maraging steel have been investigated. The results show that prior austenite grain size normally increases with increase of ST temperature. Strength and ductility in the solution treated condition are independent of both ST temperature and prior austenite grain size due to constant martensite lath spacing and dislocation tangles. In the solution treated + aged condition, the relationship between yield strength and prior austenite grain size follows the Hall- Petch equation, and ductility improves until the ST temperature used is >1373 K. Accordingly, the fracture mode transforms from intergranular to transgranular at a critical prior austenite grain size of ~ 150 μ m, because of severe segregation of Ni3(Mo,Ti) and reverted austenite at prior austenite grain boundaries and martensite lath boundaries. The variation of Charpy V notch impact energy with increase of ST temperature in both the solution treated and solution treated + aged conditions is similar to that of the tensile ductility. The fracture toughness KIC, however, increases with increase of ST temperature. No thermal embrittlement resulted from the Ti(C,N,S) inclusion segregation at prior austenite grain boundaries and martensite lath boundaries in the high temperature solution treatment.  相似文献   

17.
Abstract

The effects of predeformation on the microstructure and mechanical properties of 1020 dual phase steel were investigated. It was found that predeformation showed a significant refinement effect on the microstructures of both ferrite and martensite. The amount of twin martensite was found to increase with increasing predeformation. Ferrite twins were found to form close to martensite/ferrite boundaries. The reasons for the formation oftheferrite twin and the increase of the martensite twin due to predeformation were analysed. Results of tensile tests have shown that both yield strength and tensile strength increase with increasing predeformation, and predeformation was also shown to have a complex influence on the uniform elongation and total elongation of this dual phase steel.

MST/1181  相似文献   

18.
Abstract

In the present paper, the effects of the heat treatment processes with two conditioning treatments and four quenching–tempering processes on the mechanical properties of 2·25Cr–1Mo–0·25V high strength low alloyed (HSLA) steel are investigated. The results show that the conditioning treatments have obvious effects on the low temperature impact energy but little effect on the tensile strength. The elevation of the final austenitising temperature increases the strength, whereas it results in the decrease in the low temperature impact energy due to the coarse microstructure. The results of the fracture surfaces analysis further make sure that the fracture surfaces of tensile specimens all exhibit ductile characters with a lot of dimples. However, the fracture surfaces of impact specimens exhibit two typical fracture characters, i.e. the ductile and brittle fracture surface corresponding to the fine and coarse microstructures respectively. In addition, the elongation and reduction in area seem to be insensitive to the heat treatments. Meanwhile, the impact fracture mode is more sensitive to the grain size and not to the low temperature impact energy.  相似文献   

19.
A 13.5% Cr, 0.6% C steel, with an initial microstructure of chromium carbides in a ferrite matrix, was heat-treated by scanning a high-power laser beam over the surface. The aim was to compare the physical and chemical properties produced by this type of selective surface treatment with those resulting from a conventional furnace desensitization and quench-hardening heat treatment. Surface heating homogenized the carbon originally bound in the carbides sufficiently to produce martensite, giving hardening to levels comparable with a conventional heat treatment. Chromium-rich zones, carbides and retained austenite were also detected in the heated microstructure. Surface melting produced complete homogenization of both carbon and chromium, which resulted in the retention of large amounts of austenite in the microstructure on cooling to room temperature. Subsequent refrigeration at — 196 °C transformed some of the austenite to martensite. Pitting corrosion and local reductions in hardness were observed adjacent to treated areas under certain conditions, due to precipitation of secondary carbides and elevated tempering, respectively.  相似文献   

20.
Abstract

In the present work, the potential for producing thin walled ductile iron castings with an ausferritic matrix is presented. Experimentally, thin walled iron castings of 2 mm in thickness were obtained and characterised by a nodule count of 1992 mm?2. In addition, a reference casting was produced with a 25 mm thick wall and a nodule count of 330 mm?2. Austenitising was carried out at 920°C, whereas austempering was implemented in the 300–400°C temperature range. The austenitising and austempering transformation rates were determined by dilatometry, and the results were confirmed by microstructural analyses. It was found that in thin walled castings, the austenitising and austempering times were reduced by either one-half or one-third of the ones corresponding to the reference casting. The exhibited mechanical properties of the thin walled castings were also determined as a function of austempering time and temperature. It was found that austempering at 300°C for 1200 s leads to thin walled castings with a tensile strength of 1500 MPa. Accordingly, from this work, it is plausible to produce high strength thin walled castings that satisfy all the ASTM 897M grades of ausferritic ductile iron through proper heat treating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号