首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 5 毫秒
1.
Abstract

Although it is known that the addition of bismuth refines the graphite nodule in spheroidal graphite cast iron, the refinement mechanism has not yet been clarified. In this research, the effect of bismuth on the refinement has been investigated by examining the microstructure of the spheroidal graphite cast iron containing a small amount of bismuth. Bismuth was added at 0˙01 mass% to the spheroidal graphite cast iron melt containing 3˙5–3˙7 mass% carbon and 2˙0– 2˙8 mass% silicon, then the melt was poured into the mould to obtain the stepped test bar with 2, 3, 5 and 10 mm thicknesses. The graphite nodule increased as the bismuth content increased. The diameter of the graphite nodule decreased as the thickness decreased, namely, as the cooling rate increased. The graphite nodule was further refined by the addition of bismuth. The increase in silicon content increased the graphite nodule count and the ferrite in the matrix. It postulated that bismuth exists as simple substance or a compound in the vicinity of the nucleus of the graphite.  相似文献   

2.
Abstract

The present study examined the influence of refinement of graphite nodules on microstructure and tensile properties of austempered ductile cast iron (ADI). A casting technique using deoxidation treatment enabled manufacture of thin walled castings made of ductile cast iron without ledebulite. The thin walled casting (t=2 mm) was subjected to extreme refinement of graphite nodules, where the number of graphite nodules was 1750 mm?2. Decrease in graphite nodule diameter resulted in refinement of ausferrite and γ-pool structures in ADI and rapid reaction of austempering. The significant increase in the number of graphite nodules resulted in a remarkable drop in the tensile strength and elongation of ADI. These results can be explained by the graphite nodule distance.  相似文献   

3.
Abstract

SiC particle preforms were infiltrated with spheroidal graphite cast iron melt by vacuum assisted casting in the sand mould, and spheroidal graphite cast iron composites in which the particles were dispersed in the surface region were fabricated. Although the melt infiltration was not accomplished when the melt was poured under atmospheric pressure, the infiltration was accomplished by the vacuum assisted casting when the SiC particle volume fraction and preform thickness were optimised. When the Si content of the cast iron was 2˙5 mass%, the phase consisting of mainly Fe3Si was formed at the particle/matrix interface due to the reaction between the cast iron melt and the particles during the infiltration. The matrix of the composite consisted of fine spheroidal graphite particles, ferrite, pearite and chill crystal. Although the increase in the Si content suppressed the reaction and chill, no infiltrated area was observed in the composite.  相似文献   

4.
Abstract

Nine grades of pearlitic cast iron containing different graphite morphologies (from flake, compacted and spheroidal) have been studied. The parameters investigated include the graphite aspect ratio, nodularity, graphite size and modulus of elasticity. These parameters have been correlated and compared with different existing bound and model equations. It has been found that the modulus of elasticity of the graphite phase increases as the aspect ratio and nodularity of the graphite increases, i.e.flake graphite gives a lower modulus of elasticity than spheroidal graphite. The experimental values of the modulus of elasticity show good agreement to bound and model equations, although flake graphite cast irons show higher deviation from the modelled values. An equation for the correlation between the graphite modulus of elasticity and the nodularity is presented. Introducing this linear correlation into an existing model for the determination of the effective modulus of elasticity gives a continuous function, including all grades of cast irons, with a very good agreement with experimental values. The modulus of elasticity of cast irons can be accurately predicted from both bound and especially model equations, using the aspect ratio and nodularity of the contained graphite particles. The fit is improved by using a modulus of elasticity of the graphite phase that is based on the graphite morphology, considering that the modulus of elasticity of the graphite is different in the basal and prismatic planes.  相似文献   

5.
Abstract

There is a strong demand for heavy section castings made of spheroidal graphite with a fully ferritic matrix, e.g. for manufacturing hubs for windmills. Such castings with slow solidification process are prone to graphite degeneration that leads to a dramatic decrease of the mechanical properties of the cast parts. Chunky graphite is certainly the most difficult case of graphite degeneracy, though it has long been known that the limited and controlled addition of antimony may help eliminate it. The drawback of this remedy is that too large Sb additions lead to other forms of degenerate graphite, and also that antimony is a pearlite promoter. As part of an investigation aimed at mastering low level additions to cast iron melts before casting, solidification of large blocks with or without Sb added was followed by thermal analysis. Comparison of the cooling curves and of the microstructures of these different castings gives suggestions to understand the controlling nucleation and growth mechanisms for chunky graphite cells.  相似文献   

6.
Abstract

The deformation of metallic materials includes both an elastic and a plastic deformation. In the case of cast irons, the elastic region becomes less pronounced as the graphite changes from spheroidal to flake shaped, as observed in nodular and grey cast iron, respectively. The present study aims to correlate the shape of the graphite phase with the deformation behaviour, where the plastic deformation and other strain accommodating events are quantified by measurements of the acoustic emission events occurring in the interior of the material at loading. It also aims to explain how the appearance of cast iron stress–strain curves depends on the graphite morphology where, for instance, spheroidal graphite cast irons exhibit a seemingly linear elastic behaviour in contrast to flake graphite cast irons. The present study includes a series of pearlitic cast iron material grades with differences in nodularity and carbon equivalent, respectively. It is shown that as the roundness of the graphite phase increases, the ability to absorb energy increases. The measured acoustic emission indicates that plastic deformation occurs in the seemingly linear elastic region regardless of the cast iron grade, i.e. no cast iron grade exhibits perfect linear elasticity. The plastic deformation rate in the elastic region increases as the roundness of the graphite decreases and as the carbon equivalent increases. It is shown that the plastic deformation governs the resulting modulus of elasticity in all kind of cast irons, i.e. the modulus of elasticity decreases as the yielding of the material increases. The present study improves the understanding of the deformation behaviour in the elastic region of different cast irons. The survey shows that acoustic emission testing is a useful method when studying the deformation behaviour of cast irons.  相似文献   

7.
Abstract

Four flaky graphite cast irons of different graphite structures with a pearlitic matrix were prepared to clarify the graphite structure's influence on the dry sliding wear property. Two melts of cast iron with different carbon contents were solidified at two different cooling rates. The four resultant samples had type A flaky graphite or type D eutectic graphite structure with different graphite volume fractions and fully pearlitic matrixes. A pin on the disc type wear test evaluated the four samples' dry sliding wear properties. Results showed that the type D graphite structure wore down faster than the type A graphite structure did. The type of graphite morphology influenced the specimen wear rate as strongly as the graphite volume fraction did in flaky graphite cast irons of this experimental range.  相似文献   

8.
Abstract

Hypoeutectic 16%Cr cast irons, both Mo free and 1–3%Mo containing specimens were prepared to investigate their abrasion wear behaviour. Annealed specimens were hardened at 1323 K and then tempered at three temperatures from 673 to 873 K for 7·2 ks, the temperature giving the maximum hardness (HTmax) and the lower and higher temperature, (L-HTmax, H-HTmax). The abrasion wear behaviour was investigated using a two body type Suga abrasion wear tester. A linear relation was obtained between wear loss and wear distance. The highest wear resistance or the lowest wear rate (R W) was obtained in H Tmax specimens except for the Mo free specimen. The lowest wear resistance or the highest R W was obtained in H-HTmax specimens. The R W was decreased with an increase in macrohardness. The lowest R W appeared around 25% retained austenite (V γ ). The R W was decreased with an increase of Mo content, and the V γ value at the minimum R W shifted to the high V γ side.  相似文献   

9.
Abstract

The form and distribution of graphite in grey iron influences the mechanical properties and depends on numerous factors, such as nucleation and cooling speed conditions. The main focus of the present work is the influence of manganese, sulphur and oxygen on the nucleation of graphite in lamellar cast iron melts. Previous studies showed that the nucleation in GJL melts is initiated by a MnS particle. For investigations in the field of nucleation in grey iron the authors examined several EN-GJL-200 specimens. The specimens were cast with and without inoculant. The studies of the specimens were realised using light microscopy, SEM-EDS (energy dispersive X-ray analysis), WDS (wavelength dispersive X-ray analysis). The experimental results were compared with the software Thermo-Calc calculations. From the experimental results and the Thermo-Calc calculations it can be concluded, that Mn and S contents and the Mn/S ratio respectively plays a very important role for the nucleation. A direct influence of oxygen on the nucleation of graphite could not be observed.  相似文献   

10.
Abstract

The aim of the present work is to predict experimentally the structural trend of liquid iron based on its solidification features and the subsequent solid state transition. Both transformation processes in SG iron samples are simultaneously studied by means of industrial thermal analysis techniques. Experimental parameters are established in both cases in order to quantify the main metallurgical facts and correlate them with the structural properties of different alloys used in real manufacturing processes. A computer aided program has been designed for the treatment of the cooling curves.

A large number of experimental tests using different chemical compositions were made. After curves treatment, several studies have been conducted to correlate the thermal parameters obtained and the structural properties detected via metallographic inspections. The influence of the solidification parameters on carbon diffusion process and the resulting structures is discussed. A new structural model was developed in order to predict the ferrite content on the basis of thermal evolution of SG iron. Nucleation potential (inoculation grade), carbide formation tendency and solid state evolution of metal are evaluated and final structure distribution is accurately estimated.  相似文献   

11.
Abstract

This study intended to establish the optimal heat treatment conditions for the desired hardness and wear resistance property for the bimetal hammers developed by the authors. The objective of this study is to attain bimetal hammers that have a tough Cr–Ni alloyed steel shank and a high wear resistant high Cr cast iron head to replace conventional single alloy (high Mn steel) hammers. The results show that the optimal heat treatment condition obtained for the bimetal hammers is: destabilisation: 1000–1050°C for 2 h, quench: FAC and tempering: 480–500°C for 6 h. By employing this optimal heat treatment condition, the highest hardness value can be attained along with the best wear resistance property for the head portion and acceptable toughness for the shank portion. The microstructure of the head portion that corresponds to the optimal properties consists of eutectic M7C3 carbides, secondary M7C3 carbides, tempered martensite and almost nil retained austenite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号