首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new analysis method based on serial sectioning and three-dimensional (3D) reconstruction was developed to characterize the mineral microstructure of iron ore sinter. Through the 3D reconstruction of two types of iron ore sinters, the morphology and distribution of minerals in three-dimensional space were analyzed, and the volume fraction of minerals in a 3D image was calculated based on their pixel points. In addition, the microhardness of minerals was measured with a Vickers hardness tester. Notably, different mineral compositions and distributions are obtained in these two sinters. The calcium ferrite in Sinter 1 is dendritic with many interconnected pores, and these grains are crisscrossed and interwoven; the calcium ferrite in Sinter 2 is strip shaped and interweaves with magnetite, silicate and columnar pores. The calculated mineral contents based on a two-dimensional region are clearly different among various layers. Quantitative analysis shows that Sinter 1 contains a greater amount of calcium ferrite and hematite, whereas Sinter 2 contains more magnetite and silicate. The microhardness of minerals from highest to lowest is hematite, calcium ferrite, magnetite and silicate. Thus, Sinter 1 has a greater tumbler strength than Sinter 2.  相似文献   

2.
《钢铁冶炼》2013,40(6):447-460
Abstract

The ore mixture granulation process is described and the granulation fitness of a series of iron ores forming part of the mixture is studied. Good granulation and control of the maximum sintering temperature makes it possible to achieve the optimum sinter structure, formed by a hematite nucleus surrounded by a lattice of acicular ferrites. The granulation fitness of ore mixtures used to manufacture a series of sinters in a pilot plant are also determined. It is verified that sinters with an optimum structure have been obtained. A series of iron ores are classified using the granulation index (G index). The evolution of the G index of ore mixtures used in ACERALIA during recent years is considered and it is verified how improvement of the G index increases productivity and decreases coke consumption in the sinter strand.  相似文献   

3.
Iron ore fluxed sinter is the main ferrous burden of Jindal south west steel limited (JSWSL) blast furnaces. In sinter plant fluxes including limestone and dolomite are added to improve the sinter properties of iron ore and to provide an appropriate slag composition of the blast furnace. The raw material grain size affects the sinter process considerably because the sinter productivity and quality are strongly dependent on the green permeability of the bed, which is determined by the particle size distribution of the raw materials, the granulation effectiveness and by the sintering process itself. It is well‐known that in fluxed sinter, the size of limestone affects productivity and physical and metallurgical properties of the sinter. It is therefore necessary to understand the role of limestone particle size on sinter properties and productivity. In the present work laboratory sintering experiments have been carried out with different levels of limestone mean particle size (from 0.14 to 1.83mm) to understand the influence of limestone particle size on mineralogy, productivity, physical and metallurgical properties of the sinter. Sinter productivity increased with increasing limestone mean particle size due to improved sinter bed permeability. Sinter with limestone mean particle size of 1.25 to 1.52 mm yielded better sinter strength and lower RDI compared to sinter with smaller or larger limestone mean particle size. Higher sinter strength is due to better and uniform distribution of limestone particles, and better bed permeability enabled easy assimilation and effective distribution of calcium ferrite phases. The improvement in sinter RDI is due to change in mineralogy of the sinter compared to coarser and finer limestone mean particle size.  相似文献   

4.
X. Fan  M. Gan  X. Chen  Q. Li  T. Jiang 《钢铁冶炼》2016,43(1):5-10
This study was carried out to determine the influence of using charcoal as a supplementary fuel on the microstructure and reduction properties of sinter. The primary fuel was coke breeze with 0, 20, 30 and 40% replacement of weight input with charcoal to produce sinter. Experimental results indicate that when the replacement percentage of charcoal to coke breeze increased from 0 to 40%, the porosity and FeO content of sinter also rose. These changes result in an enhancement from 79.8 to 84.3% for the reducibility index due to the increased reducing surface area. In addition, the reduction degradation of sinter also improves since degradation during crystalline transformation is restricted. Therefore, replacing coke breeze with charcoal is able to improve the reducing properties of sinter, which is beneficial to small and large blast furnace operation.  相似文献   

5.
为降低烧结矿成本,对烧结原料中配加一定比例的贾家堡铁矿进行了研究。烧结杯试验结果表明,随着烧结铁料中贾家堡铁矿配比增加,烧结矿成品率呈现逐渐降低趋势,转鼓指数也逐渐降低。贾家堡铁矿配比由0增加到4.48%时,烧结矿低温还原粉化率由76.7%降低到71.9%,而当贾家堡铁矿配比继续增加时,低温还原粉化率却有所上升。  相似文献   

6.
《钢铁冶炼》2013,40(7):515-520
Abstract

Dolomite and other MgO bearing materials are being increasingly used as basic flux constituents for production of fluxed sinters. Addition of flux materials in sinter influences the resultant sinter microstructure and chemical properties. The physical and metallurgical properties of sinter mainly depend on mineralogy of the sinter. Dolomite is the source of double carbonate of calcium and magnesium. Recent studies reveal that, apart from the additional fuel needed, the addition of dolomite and MgO bearing material greatly influences the magnetite content and the properties of the sinter produced. The increasing use of MgO bearing fluxes in the blast furnace burden, and the trend to incorporate a major part of fluxes in the sinter mix led to an investigation of the influence of MgO on sinter properties and productivity. In this study, the systematic investigation has been made on the influence of MgO% (1·4 to 2·6) on sinter mineralogy and sinter properties with dolomite. Microstructural examination of dolomite sinter revealed that hematite and calcium ferrite phases decreased whereas magnetite phase increased with increase in MgO percentage in sinter. From the laboratory pot grate sintering results it was found that sinter reduction degradation index improved whereas tumbler index and reducibility decreased with increase in MgO%.  相似文献   

7.
杜亮  韩秀丽  张全胜  周祥  杨宏达  王英 《钢铁》2020,55(6):38-45
 为了改善外矿型烧结矿的质量,对不同类型外矿为主要含铁原料的烧结矿的矿相结构进行了系统定量研究,分析了外矿对其矿相结构的影响规律,找出了烧结矿矿相特征与冶金性能的定量关系。研究结果表明,以斯特拉麦克粉和天发海超特粉为主要含铁原料(1号)的烧结矿,铁酸钙含量较多,以交织熔蚀结构为主,局部出现粒状-斑状结构,低温还原粉化率RDI>3.15 mm较好,气孔率较高,转鼓指数较低。以纽曼粉、PB粉和杨迪粉为主要含铁原料(4号和5号)的烧结矿,5号烧结矿中赤铁矿含量较多,铁酸钙含量较低,以熔蚀-粒状结构为主,局部为共晶结构,转鼓指数最高,但低温还原粉化严重;4号烧结矿的纽曼粉和PB粉的含量较多,以交织熔蚀结构为主,局部出现粒状-斑状结构,转鼓强度较低。以纽曼粉和得宝麦克粉为主要含铁原料(2号和3号)的烧结矿,3号烧结矿铁酸钙含量最多,矿相结构较为均匀,以交织熔蚀结构为主,局部见针状铁酸钙交织他形赤铁矿,该烧结矿质量最好;2号烧结矿的纽曼粉和得宝麦克粉含量较高,矿物组成中赤铁矿含量多,铁酸钙含量少,以交织熔蚀结构为主,局部出现粒状-斑状结构,低温还原粉化严重。建议以纽曼粉为主,配加少量麦克粉、杨迪粉及超特粉做为主要含铁原料,以改善现场烧结矿质量。  相似文献   

8.
《钢铁冶炼》2013,40(5):351-357
Abstract

The structure of granules has been investigated and a model of granulation determined. The results show that a granule consists of an adhesive layer and a nucleus. Particles with diameter under 0.5 mm act as adhesive fines, while the remainders act as nuclei. By studying the influencing factors of granulation, two significant particle characteristics assessing granulation performance were determined. One is the relative proportion of adhesive fines and nucleus particles, and the other is the specific surface area of adhesive fines. The method of optimising granulation of sinter mixtures is proposed as follows: the proportion of adhesive fines should be 40–50% and the specific surface area should exceed 1000 cm2 g?1, which contributes to achieving a better bed permeability, a faster sintering speed and higher productivity.  相似文献   

9.
高登学 《包钢科技》2000,26(3):45-47
由于烧结用原燃产的不均一性,使得烧结工艺过程是一个不平衡的工艺过程,影响着烧结矿的成品率和强度。通过对烧结工艺中诸多技术要素的探讨,寻求均匀烧结的途径,从而改善烧结矿的成品率和强度。  相似文献   

10.
In this study, the optimisation model of fuel distribution base on numerical simulation was proposed to reduce the fuel consumption of sintering process. The simulation model of sintering process was carried out according to the heat and mass transfer, and the physical and chemical reactions of sintering. Then the heat income and expenditure of solid mixture in different materials unit was analysed via the simulation model. And the fuel proportion was adjusted on the basis of the difference between total heat quantity and heat quantity that the materials unit required to reach setting temperature. This model was validated by sintering pot test, the simulation results of bed temperature at different depth were very close to the detection results. The sintering pot test shows that the sinter yield and quality indices had little change after the optimisation of fuel distribution, while the solid fuel consumption was decreased by 3.83?kg?t?1.  相似文献   

11.
《钢铁冶炼》2013,40(6):410-417
Abstract

From a sinter production point of view, it is important to optimise the sintering process with regard to both sinter quality and production rate. In sintering, airflow rate within the sinter bed decides the production rate and its physical and metallurgical properties. To study the influence of airflow rate (flame front speed) on sinter production and sinter quality, pot grate sintering experiments were conducted at sinter grate suction pressures ranging from 900 to 1700 mm water column over the sinter bed. During sintering, time–temperature data were recorded, and mineralogical studies were carried out. This study reveals that increase in sinter grate suction pressure through the sinter bed from 900 to 1700 mm water column significantly improved the sinter productivity from 34·37 to 48·90 t/m2/day; however, the physical and metallurgical properties of the sinter at higher suction pressure were not optimum with respect to blast furnace requirements. The maximum sinter productivity with desired physical and metallurgical properties was obtained at suction pressure 1300 mm water column. At this pressure, improvement in sinter quality was due to optimum firing temperature and enough retention time available for formation of mineral phases. At an airflow rate 1300 mm water column, sinter productivity was 41·0 t/m2/day, sinter strength (TI) was 73·10%, reduction degradation index was 25·0 and reducibility was 71·50%.  相似文献   

12.
混匀矿中返矿的比率约为25%~50%。如此大比例的返矿会对烧结过程和烧结矿质量产生很大影响。研究旨在揭示返矿量和焦粉量变化的影响。研究采用了因子设计方法,研究表明返矿的产生主要取决于烧结混合料中的固体燃料和返矿比例,增加混合料中的返矿配入量会减少烧结过程中的返矿发生量。烧结过程效率随着混合料中返矿比例的增加而提高(最适宜的混合碱度为1.6)。研究表明,要确保返矿平衡率在90%~110%的范围内,混合料中返矿配比最高不能超过35%,最小不能<25%。  相似文献   

13.
烧结矿是现代高炉生产的主要含铁原料。合理控制入炉烧结矿的理化性能与冶金性能对高炉生产和稳定操作是很必要的。铁矿粉是烧结矿的主要原料,其化学成分和烧结料层内的热量条件在烧结过程中起着重要的作用。化学成分等参数也决定着烧结矿矿相结构和质量。由于含氧化铝原料的低反应性及其液相的高粘性,因此在人们的预料中高铝矿石对烧结矿结构组成的影响并不好。烧结混合料中的氧化铝在同化过程中需要消耗大量热量,延迟烧结过程。在确保高炉渣的流动性方面,氧化铝也需要消耗较大热量。不论是烧结还是高炉的生产实绩均表明,氧化铝是有害的。一般而言,高含铁量与低脉石的印度矿与其他矿石的不同特点就是氧化铝含量高。由于高品味铁矿石的消耗殆尽,使用可利用的烧结原料成为生产必需。因此,必须要掌握氧化铝的作用及其对烧结矿质量和生产过程的影响。实验室完成了不同氧化铝含量水平(2.00%~5.46%)的实验,可从中了解氧化铝在烧结矿矿物学、生产率、物理性能和冶金性能方面的影响。随着烧结矿中氧化铝含量的增加,残存赤铁矿、复合铁酸钙(SFCA)和孔隙率增加,而磁铁矿和硅酸盐比例下降。烧结生产率和烧结矿转鼓强度(TI)随着氧化铝含量上升而下降,反映烧结矿冶金性能的诸如低温还原粉化率(RDI)和还原率(RI)提高。  相似文献   

14.
通过可视化高温实验装置观察了七种不同类型常用进口铁矿粉试样的熔化流动过程.在所测定的熔融曲线上定义了T30、T55、TR以及SR等表征其熔融特性的评价指标,并以此考察了不同类型铁矿粉的烧结熔融特性.研究结果表明:澳大利亚褐铁矿最容易产生液相,但其液相形成过程中温度区间窄,温控性差,安全性低;澳大利亚半褐铁矿在低温烧结条件下有效液相量不足,而温控性则略好于澳大利亚褐铁矿;澳大利亚、南非以及巴西南部的赤铁矿熔融特性较为适宜,但前者易形成液相而后两者温控性和安全性更好;巴西的南部精粉、北部赤铁矿在低温烧结下很难生成液相.通过对各种铁矿粉熔融特性的研究,提出了基于铁矿粉熔融特性的烧结优化配矿原则.  相似文献   

15.
 为了解决如何利用铁矿粉多项高温反应性能指标评价其烧结性能的难题,基于综合评价方法,提出了铁矿粉高温反应性能综合指数,并通过铁矿粉高温反应性能4项指标的测定及烧结杯试验,研究了单矿A、B、C以及C矿分别与A矿和B矿混合的矿粉的高温反应性能及烧结性能。结果表明,对于高温反应性能,混合矿粉同化性能和液相流动性具有线性迭加性,黏结相自身强度和铁酸钙生成特性线性迭加性差。对于烧结性能,混合矿粉烧结矿转鼓强度具有线性迭加性,烧结矿产量(利用系数)和固体燃耗没有线性迭加性。无论单矿或混合矿,烧结转鼓强度与其高温反应性能综合指数呈线性正相关,其[R2](相关系数的平方值)值分别高达0.9403和0.9702,拟合度好;而烧结利用系数及固体燃耗与其相关性差。因此,铁矿粉高温反应性能综合指数可以很好地评价和预测烧结矿转鼓强度,但不能有效地解释烧结矿产量和固体燃耗的变化。  相似文献   

16.
为了响应国家碳达峰碳中和号召,钢铁企业对于生产节能减排的要求也越来越高,烧结工艺由于在生产过程中固废排放量巨大,因此常常面临限产而导致的烧结产能不足等问题.国内外生产实践表明,高炉高比例球团冶炼具有燃料比低、渣量少等优点,且球团矿性能优良、生产过程更为环保,具有很好的应用前景.为了配合高球比炉料结构的应用,同时避免由于...  相似文献   

17.
提高包钢烧结矿还原透气性的研究   总被引:2,自引:1,他引:1  
采用配矿和调整烧结矿碱度的方法,研究提高包钢烧结矿还原透气性的途径。试验结果指出,在混合料中配入30-40%的河北精矿,将烧结矿碱度由现在的1.8降至1.4 钢烧结矿的还原透气性。  相似文献   

18.
Blast furnace(BF)slag is a by-product of the ironmaking process and could be utilized to manufacture slag fiber by adding iron ore tailing.The crystallization behavior of the modified BF slag is significant to the fibrosis process.To investigate the influence of basicity on the crystallization behavior,BF slag was modified by adding iron ore tailing at room temperature and melted at 1 500°C.FactSage simulation,X-ray diffraction,scanning electron microscopy backscattered electron imaging coupled to an energy dispersive spectrometer,and hot thermocouple technique analysis were performed to explore the crystallization behavior of the modified BF slag during the cooling process.It was found that the initial crystallization temperature increased with the increase in basicity.Melilite,anorthite,clinopyroxene,and wollastonite could be generated during the cooling process as basicity ranged from 0.7 to 0.9.Spinel could be found as one of the phases;however,wollastonite disappeared under a basicity of 1.0.The initial crystallization temperature was controlled by the crystallization of melilite during the cooling process when the basicity of the modified BF slag ranged from 0.7 to 1.0.Moreover,the cooling rate could also influence the crystallization of the modified BF slag.  相似文献   

19.
对来自巴西、澳大利亚、南非以及国产的19种铁矿粉的同化性进行了实验测定和考察分析,在此基础上研究了基于铁矿粉同化性的互补配矿方法,并设计了九组烧结优化配矿方案.结果表明:(1)不同类型铁矿粉的同化性存在显著差异,巴西赤铁矿和国产磁铁矿的同化性低,而澳大利亚含结晶水的赤铁矿的同化性高;(2)铁矿粉的烧损含量、气孔率和Al2O3含量等与其同化能力呈正相关关系;(3)SiO2和Al2O3以黏土形式存在的铁矿粉呈现出同化性较高的特征;(4)铁矿物晶粒小的铁矿石有相对高的同化性;(5)采用本研究的配矿方法,当劣质铁矿粉用量达50%水平时,仍可获得烧结技术指标和冶金性能优良的烧结矿,显示出基于同化性的互补配矿技术的有效性和优越性.  相似文献   

20.
In order to explore effects of element content and temperature on the viscosity, viscosities of molten iron were precisely measured by the oscillating crucible method. The results obtained are summarised as follows: The viscosity of molten iron rises first and then decreases with the decreasing temperature; the viscosities before and after the turning point are the viscosity property and the solidification property, respectively. The temperature of the turning point decreases with the increasing carbon content. The viscosity increases with the increasing silicon and titanium content; on the contrary, the viscosity shows a downward trend with the increasing manganese, phosphorus, and sulphur content. The mechanism of various elements on the viscosity was analysed; the quantitative relationship between the viscosity and element content was obtained. The prediction model of the viscosity was established based on the co-existence principle; the calculation results of the model were in accordance with the measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号