首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

In this study, the corrosion mechanisms of the AA2024-T3 and the AA2098-T351 were investigated and compared using various electrochemical techniques in 0.005?mol?L?1 NaCl solution. The severe type of corrosion in the AA2098-T351 was intragranular attack (IGA) although trenching and pitting related to the constituent particles were seen. On the other hand, the AA2024-T3 exhibited severe localised corrosion associated with micrometric constituent particles, and its propagation was via grain boundaries leading to intergranular corrosion (IGC). Electrochemical techniques showed that the corrosion reaction in both alloys was controlled by diffusion. The non-uniform current distribution in both alloys showed that EIS was not a proper technique for comparing the corrosion resistance of the alloys. However, local electrochemical techniques were useful for the evaluation of the corrosion resistance of the alloys.  相似文献   

2.
In this study, two kinds of Al–La master alloys were prepared by ultrasonic method and ordinary mixmelting method, and both of the alloys were added into the Al alloy.Then, the microstructure of Al–La master alloy and the modification effect on the Al alloy were investigated using optical microscope(OM), X-ray diffraction(XRD), scanning electron microscope(SEM), and energy disperse spectroscopy(EDS).The results show that because of ultrasonic cavitation and streaming, the grain size of Al–La master alloy prepared by the ultrasonic method is refined, which distributes evenly.And, there is no gas hole,inclusion, or segregation in the Al–La master alloy with aAl, La, and La3Al11.Furthermore, Al–La master alloys show a nice modification for Al alloy, which is much better than that prepared by ordinary mix-melting method.  相似文献   

3.
Abstract

It is difficult to weld the dissimilar material combination of aluminium alloys and low alloy steels using fusion welding processes, on account of the formation of a brittle interlayer composed of intermetallic compound phases and the significant difference in physical and mechanical properties. In the present work an attempt has been made to join these materials via the friction welding method, i.e. one of the solid phase joining processes. In particular, the present paper describes the optimisation of friction welding parameters so that the intermetallic layer is narrow and joints of acceptable quality can be produced for a dissimilar joint between Al-Mg-Si alloy (AA6061) and Ni-Cr-Mo low alloy steel, using a design of experiment method. The effect of post-weld heat treatment on the tensile strength of the joints was then clarified. It was concluded that the friction time strongly affected the joint tensile strength, the latter decreasing rapidly with increasing friction time. The highest strength was achieved using the shortest friction time. The highest joint strength was greater than that of the AA6061 substrate in the as welded condition. This is due to the narrow width of the brittle intermetallic layer generated, which progressed from the peripheral (outer surface) region to the centreline region of the joint with increasing friction time. The joints in the as welded condition could be bent without cracking in a bend test. The joint tensile strength in the as welded condition was increased by heat treatment at 423 K (150° C), and then it decreased when the heat treatment temperature exceeded 423 K. All joints fractured in the AA6061 substrate adjacent to the interface except for the joints heated at 773 K (500° C). The joints fractured at the interface because of the occurrence of a brittle intermetallic compound phase.  相似文献   

4.
Abstract

In this work, a novel diffusion bonding technique combining the laser surface treatment (LST) with the diffusion bonding is used to join a γ-Ti–Al alloy with a Ti–6Al–4V alloy. By using the LST and subsequent heat treatment, a layer with a fine grain structure can be obtained on their surface of the two alloys. The diffusion bonding behaviour between γ-Ti–Al alloy and Ti–6Al–4V alloy with or without LST under the different bonding conditions is investigated. The result reveals that LST can improve the diffusion bonding behaviour of the two alloys, and the three point bending strength of the joints can be promoted. The sound bonding between the two alloys with the LST is achieved at 1173 K under 80 MPa in 2 h.  相似文献   

5.
The quench sensitivity of Al-Cu-Mg alloy was investigated at different thicknesses of the thick plate.The quenching process was simulated via finite element analysis (FEA);time-temperature-property (TTP) curves and time-temperature-transformation (TTT) curves were obtained through hardness test and differential scanning calorimetry (DSC) test;and the microstructural observation was carried out by scanning electron microscopy (SEM)and transmission electron microscopy (TEM).Experimental results ex...  相似文献   

6.
Commercial A356 alloy was refined with a homemade Al-5Ti-0.25C-2RE master alloy, and the microstructure and macrostructure of the refined alloy were investigated. The results show that the grain refining effect of A356 is poor by the addition level of 0.5 wt% master alloy, but when the level reaches 3.0 wt% the grain can get a satisfactory refining effect. Dendrite of A356 can be effectively refined by addition of 0.5 wt% master alloy; however, the refining effect is not significantly improved by further increasing the addition of master alloy. Grain and dendrite refining effects are compared in this article, and the results show that the grain and dendrite exhibit different refining effects with the same addition level of master alloy. Dendrite is easier to reach the optimal refining effect than grain.  相似文献   

7.
Homogenization heat treatment of 2099 Al–Li alloy   总被引:3,自引:0,他引:3  
The microstructure evolution and composition distribution of as-cast and homogenized 2099 aluminum– lithium(Al–Li) alloy were studied by optical microscopy(OM), differential thermal analysis(DTA), scanning electron microscopy(SEM), energy dispersive spectrometry(EDS), area and line scanning, X-ray diffraction(XRD), and Vickers microhardness test methods. The results show that severe dendrite exists in the as-cast alloy. Cu, Zn, Mn, and Mg distribute unevenly from the grain boundary to inside. The low-melting point nonequilibrium eutectic phases dissolve into the matrix during the first-step homogenization, whereas the melting point of residual eutectic phases is elevated. After the second-step homogenization, most of the remaining eutectic phases dissolve into the matrix, except a small amount of Al–Cu–Fe phases. An optimized homogenization process of the 2099 Al–Li alloy is developed(515 °C 9 18 h ? 525 °C 9 16 h), which shows a good agreement with the homogenization kinetic analysis results.  相似文献   

8.
This work shows the effect on the soldering process of the addition of Ag and Cu to Sn–Zn alloys. Soldering of Al/Cu and Al/Al joints was performed for a time of 3?min, at a temperature of 250°C, with the use of flux. Aging was carried out at 170°C for Al/Cu and Al/Al joints for 1 and 10 days. During the aging process, intermetallic layers grew at the interface of the Al/Cu joint at the Cu substrate. Intermetallic layers were not observed during wetting of Al/Al joints. On the contrary, dissolution of the Al substrate and migration of Al-rich particles into the bulk of the solder were observed. The experiment was designed to demonstrate the effect of Ag and Cu addition on the dissolution of Al substrate during the soldering and aging processes. In the solder alloys, small precipitates of AgZn3 and Cu5Zn8 were observed.  相似文献   

9.
《Intermetallics》2000,8(5-6):693-698
Binary Fe–40Al and ternary Fe–40Al–0.6C alloys were cast, hot-extruded into rods, annealed at low temperatures to reduce the non-equilibrium vacancy concentration and tested in uniaxial tension at room temperature in air, over a range of strain rates from 4.2×10−1 s−1 to 4.2×10−8 s−1. Yield strength, fracture strength, tensile ductility and the work-hardening behavior in the 0.2–1.0% plastic deformation range were monitored. Resulting fracture surfaces were examined at low and high magnifications, and the change in the fraction transgranular cleavage as a function of test strain rate was correlated with the observed mechanical properties. Prior to testing, both alloys exhibited fairly coarse grain size (∼80–100 μm); whereas the binary alloy was single phase, the ternary alloy contained a dispersion of lath-shaped perovskite carbides (Fe3AlC0.5) in the grain interior and at grain boundaries. In the binary alloy, ductility decreases continuously with decreasing strain rate and this behavior has been previously attributed to an environmental effect. For a given strain rate, over the range of strain rates examined, the ternary alloy demonstrates improved ductility over the binary alloy; furthermore, at the extremely slow strain rates (<4×10−7 s−1), the ductility of the ternary alloy increases with decreasing strain rate after reaching a minimum. Whereas in the binary alloy, fracture mode remains completely intergranular over the entire strain rate regime, in the ternary alloy, fracture mode is completely intergranular at the fastest strain rate but gradually transitions to a predominantly transgranular cleavage mode with decreasing strain rate. A maximum in the fraction transgranular cleavage is reached coincident with the ductility minimum, beyond which (i.e. lower strain rates) the fraction transgranular cleavage decreases sharply. These observations are discussed in terms of the possible role of these carbides as hydrogen traps and their consequential effects on mechanical properties.  相似文献   

10.
Abstract

An experimental Al–Cu–Li–Mg–Ag–Zr type alloy in the form of 13.7 mm thick plates was studied for its fusion characteristics using gas metal arc welding (GMAW) and pulsed gas metal arc welding (P-GMAW). High copper 2319 filler of 1.6 mm diameter was used. The burn-off characteristics of 2319 filler wire in GMAW and P-GMAW were experimentally determined, including the relation between pulse current and pulse duration for the desired one-drop detachment per pulse (ODPP) condition and feasible range of pulse parameters. The effect of welding parameters on bead geometry and shape relationships was investigated through beadon-plate experiments in the welding current range above the spray transition current. Reasonably good weld beads were obtained in P-GMAW at currents as low as 194 A and welding speeds of 45 cm min–1. P-GMAW yielded significantly higher weld penetration compared to GMAW.  相似文献   

11.
《Intermetallics》2000,8(4):407-416
To improve the mechanical properties of the Al–21Ti–23Cr two-phase alloy consisting of L12 matrix and 20 vol% Cr2Al as a second phase, microstructure control was conducted through the aging treatment as a thermal process and the addition of V and Zr as conventional alloying. It was found that TiAlCr was precipitated as a third phase in the L12 matrix by the aging treatment at 800 and 1000°C, and its size was smaller at 800°C than at 1000°C. The yield strength of the aged alloy increased rapidly only at 800°C although the third phase was precipitated at both 800 and 1000°C. In the V-added two-phase alloys, the yield strength and the strain increased simultaneously when V was added up to 3 at%, which is attributable to the improvement in the ductility of Cr2Al. Microstructure control conducted in this study suggests the possibility of improving the mechanical properties of L12 (Al,Cr)3Ti-based two-phase alloy by precipitating the fine third phase in the L12 matrix and enhancing the ductility of the second phase.  相似文献   

12.
13.
The interfacial reaction between Co–Cr–Mo alloy and liquid Al was investigated using immersion tests. Microstructure characterization indicated that the Co–Cr–Mo alloy was corroded by liquid Al homogeneously, with the formation of a (Co,Cr,Mo)2Al9 layer close to alloy matrix and “(Cr,Mo)7Al45 + Al” layer close to Al. Kinetics analysis showed that the corrosion of the Co–Cr–Mo alloy followed a linear relationship with the immersion duration. Compared with pure Co–liquid Al reaction system, the alloying of Cr and Mo changed the solid–liquid interface structure, but the corrosion of the solid metal was still dominated by the dissolution of an intermetallic layer.  相似文献   

14.
《Scripta materialia》2004,50(7):921-925
The investigation of the compressive behavior of an extruded nanocrystalline Al–Fe–Cr–Ti alloy reveals that the ductility of the alloy is determined by the status of the oxide film at the prior powder particle boundaries. When properly extruded, the alloy exhibits more than −0.45 compressive strain at 25 °C coupled with superior specific strengths up to 400 °C. The enhanced strength is attributed to grain refinement, intermetallic precipitation, and solid solution.  相似文献   

15.
《Intermetallics》2000,8(5-6):595-597
Microstructures and hydrogen embrittlement of Ti–49 at% Al were investigated. Results showed that there were three kinds of microstructures formed by heat treatment at 1423, 1573 and 1703 K. The specimens which were heat-treated at 1573 K, showed better elongation than the others on tensile tests at room temperature, and this kind of specimens were used to investigate the effect of hydrogen on tensile properties of this alloy. After heat-treatment in hydrogen gas at 1073 K for 3 h, the specimens were divided into three groups. In the first group, they were tensile-tested at room temperature in vacuum; in the second group, they were heat-treated at 823 K for 1.5 h in argon gas followed by tensile-testing at room temperature in vaccum; and in the third group, they were tensile-tested at 473 or 573 K in vacuum. Results showed that for the specimens precharged with hydrogen, the elongation was decreased significantly at room temperature, and that the decreased elongation was recovered by removing hydrogen at 823 K in Ar gas, although it was not recovered to that of the specimens without hydrogen. This means that hydrogen decreases the room temperature elongation of this alloy. For the precharged specimens the elongation was also decreased at 473 and 573 K in vacuum. This may indicate that hydrides in the precharged specimens affect the tensile properties in vacuum.  相似文献   

16.
《Acta Materialia》2003,51(17):5199-5209
The structure–property relationship of a spray formed Al–Y–Ni–Co alloy with two sets of processing conditions was investigated. Significant differences in tensile strength, yield strength, and high temperature ductility were observed with respect to the microstructural changes. Fracture toughness values were determined for both sets of specimens and found to be 7.5 and 5.8 MPa·m1/2, respectively. Three intermetallic phases were observed in the matrix and constitute a volume fraction of approximately 75%. It is believed that the specimens failed during fracture toughness testing by the mechanism of cleavage, observed in the Al3Y intermetallic particles.  相似文献   

17.
The material of a shell structure subjected to 20-year use under ambient conditions has been studied. The structure and mechanical characteristics of a strain-hardened AMg6 alloy, as well as the effect of subsequent holdings of this alloy for 10–3000 h at temperatures of 50, 70, 80, 100, 130, 150, 180, and 220°C, on changes in its dislocation structure and mechanical characteristics have been investigated. It has been shown that, in the structures under study, the AMg6 alloy has a cellular structure with a high density of dislocations and the ultimate strength σu = 445.5 ± 2.5 MPa, the proof stress σ0.2 = 326.5 ± 3.5 MPa, and the relative elongation δ = 11.7 ± 0.5%. Polygonization in the alloy occurs at a temperature of 220°C and the initial stage of the recovery process corresponds to a temperature range of 50–100°С in which the softening process can be divided into two stages, i.e., stage (1) of active softening due to the interaction of point defects with each other and stage (2) of the stabilization of the characteristics of the alloy.  相似文献   

18.
《Intermetallics》1999,7(8):875-879
A Ti–40Al–10V (at%) intermetallic compound has been developed using vacuum arc remelting and hot-isostatic pressing (HIP), followed by isothermal hot-forging (IHF). The alloy, composed mainly of B2 and γ phases with equiaxial grains of several μm in average diameter and a small amount of α2 phase with equiaxial grains of smaller size, shows excellent tensile properties; it has an elongation larger than 6% on average and yield strength larger than 700 MPa at low (ambient temperature) to intermediate temperatures, although the strength decreases rapidly at temperatures higher than 600°C.  相似文献   

19.
《Acta Materialia》2008,56(14):3490-3501
A variation of the Orowan equation is developed for aluminium alloys strengthened by dispersed, deformation-resistant {1 0 0}α precipitate plates, and the quantitative effects of precipitate volume fraction, number density and aspect ratio on increments in Orowan strengthening are examined. The validity of the model is examined by a combination of mechanical property measurements and rigorous quantitative stereology of the size and distribution of {1 0 0}α plates of θ′ phase in an Al–4Cu–0.05Sn (wt.%) alloy aged isothermally at 200 °C. For the ageing conditions selected, the predictions of the model for Orowan strengthening increments are in good quantitative agreements with those observed experimentally. The model predicts that, for a given volume fraction and number density of precipitate plates, an increase in plate aspect ratio can lead to a substantial increase in strength. In addition, it is not necessary to invoke a transition from precipitate deformation to Orowan strengthening to account for the form of the precipitation-strengthening response of the alloy. The maximum strengthening increment is associated with the minimum effective inter-particle spacing, rather than a critical thickness of the precipitate plates.  相似文献   

20.
A technology is developed for single-pass friction stir welding (FSW) of 11- and 35-mm-thick plates of Al–Mg–Sc alloys. The microstructural and mechanical heterogeneity of the welded joints is investigated. The welded joints obtained under the optimum welding conditions are free from macrodefects. The strength of the welded joint equals 98% of the strength of the parent metal, which is higher than the strength of fusion-welded joints. It is concluded that the FSW of thick plates of Al–Mg–Sc alloy can be used efficiently in practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号