共查询到20条相似文献,搜索用时 15 毫秒
1.
《Materials Science & Technology》2013,29(3):713-716
An analytical model for the thermal conductivity of Cu/diamond composites with connected particles is presented by replacement of a cluster of connected particles with an equivalent polycrystal subsequently using a multiple effective medium approach. By applying this model to the measured thermal conductivity of Cu/diamond composites prepared by high pressure high temperature sintering technique reported in the literature, we show that it quite well describes the observed thermal conductivity enhancement induced by the connected particles. We estimate the value of connected particle loading in real composites and show that large particles are easier to form the bonding contact than small particles. The present work also demonstrates that the sensitivity of thermal conductivity contribution from the connected particles strongly depends on the particle size, and their pronounced thermal conductivity enhancement should lie within the certain particle size range. 相似文献
2.
Modeling the thermal conductivity of diamond reinforced aluminium matrix composites with inhomogeneous interfacial conductance 总被引:1,自引:0,他引:1
Ke Chu Chengchang Jia Xuebing Liang Hui Chen Wenjia Gao Hong Guo 《Materials & Design》2009,30(10):4311-4316
A reasonable model for describing the thermal conductivity of diamond reinforced aluminium matrix composites behaving a distinctive character of inhomogeneous distribution of interfacial thermal conductance on diamond surfaces is proposed in terms of an equivalent diameter approach combined with a double effective-medium approximation scheme. Theoretical analyses for the thermal conductivity of diamond reinforced Al (Si) composites prepared by different infiltration techniques (squeeze casting (SQ), gas pressure infiltration (GPI)) are given for rediscovering the existing experimental results considering inhomogeneous conductance behavior. Numerical results using present model agree reasonably well with the experimental observations and explore new findings, i.e. the diffusion bonding also occurs at Al–diamond {1 1 1} interfaces of GPIed composites; the interconnected particles is possibly existed in GPIed Al/diamond composites. 相似文献
3.
A thin layer of poly (vinyl alcohol) (PVA) was coated on the surface of silicon carbide whiskers (SCWs) and crosslinked by glutaraldehyde, and then these modified whiskers (mSCWs) were incorporated into high density polyethylene (HDPE) to prepare HDPE/mSCW composites with a high thermal conductivity. The thermal conductivity, mechanical properties, heat resistance, thermal stability and morphology of HDPE/mSCW and HDPE/SCW composites were characterized and compared. The results reveal that the thermal conductivity of both HDPE/SCW and HDPE/mSCW composites increases with the increase of filler loading, and reaches a maximum of 1.48 and 1.69?W/(m?K) at 40?wt% filler loading, which is 251.2% and 300.75% higher than that of HDPE, respectively. Significantly, HDPE/mSCW composites have a higher thermal conductivity than their HDPE/SCW counterparts with the same filler loading. In addition, the heat resistance, Young’s modulus and yield strength of both HDPE/SCW and HDPE/mSCW composites are also improved compared with that of HDPE. mSCW can be homogenously dispersed in the HDPE matrix, which contributes to the formation of thermally conductive networks by the inter-connection of mSCWs. 相似文献
4.
5.
Cu/diamond composites were fabricated by spark plasma sintering (SPS) after the surface pretreatment of the diamond powders, in which the diamond particles were mixed with copper powder and tungsten powder (carbide forming element W). The effects of the pretreatment temperature and the diamond particle size on the thermal conductivity of diamond/copper composites were investigated. It was found that when 300 μm diamond particles and Cu–5 wt.% W were mixed and preheated at 1313 K, the composites has a relatively higher density and its thermal conductivity approaches 672 W (m K)−1. 相似文献
6.
以高导热沥青基炭纤维布为增强体,中间相沥青为黏结剂,采用热模压成型及液相浸渍裂解工艺增密,并经高温石墨化处理制备二维高导热炭/炭复合材料。利用X射线衍射仪和透射电子显微镜对经不同温度处理后的沥青基炭纤维及二维高导热炭/炭复合材料的结构和形貌变化进行表征,并考察石墨化处理温度对复合材料热导率的影响。结果表明,随着热处理温度的升高,纤维及复合材料内部石墨微晶尺寸增大、取向度变好,纤维与基体间界面结合紧密、裂纹减少,而基体碳层间裂纹则呈扩大趋势。此外,二维高导热炭/炭复合材料的热导率随热处理温度的升高而线性增加,经3 000℃处理后,材料热导率高达443 W/m·K。 相似文献
7.
BN filler was added to a liquid crystalline (LC) epoxy resin to obtain a high thermal conductive material. The LC epoxy/BN composites, which were cured at different temperatures, formed an isotropic or LC polydomain phase structure. The relationship between the network orientation containing mesogenic groups and the dispersibility of the BN filler was discussed. As a result, the thermal conductivity of the LC polydomain system was drastically enhanced even at a relatively low volume fraction of BN (30 vol%), regardless of the fact that both the LC and isotropic phase systems consisted of the same resin and filler content combination. This result is due to the formation of thermal conductive paths by the BN filler by exclusion of the BN filler from the LC domain formed during the curing process in the composite having the LC polydomain matrix. 相似文献
8.
Geng-Sheng Jiao He-Jun Li Ke-Zhi Li Yu-Lei Zhang 《Materials Science and Engineering: A》2008,486(1-2):556-561
This work proposes a multi-composition oxidation resistant coating for SiC-coated carbon/carbon (C/C) composites by slurry method using the mixture of Y2O3, ZrO2, Al2O3, Si and C. XRD analysis shows that the phases of the composite coating are composed of SiC, Al2O3, Y2O3, ZrO2, Al4SiC4 and Y3Al2(AlO4)3. SEM analysis of the cross section of the coating displays the microstructure with 500 μm thickness which filled the porous SiC. Oxidation test shows that, after 19 h oxidation in air at 1873 K, the weight loss of the coated SiC-C/C is only 1.76%. The oxidation of the coated C/C composites was primarily due to the reaction of C/C matrix and oxygen diffusing through the penetrable cracks and bubble holes in the coating. 相似文献
9.
Polymeric composites with relatively high thermal conductivity, high dielectric permittivity, and a low dissipation factor are obtained in the present study. Three types of core-shell-structured aluminum (Al) particles are incorporated in poly(vinylidene fluoride) (PVDF) by melt-mixing and hot-pressing processes. The morphological, thermal, and dielectric properties of the composites are characterized using thermal analysis, a scanning electron microscope, and a dielectric analyzer. The results indicate that the Al particles decrease the degree of crystallinity of PVDF, and that the particle size and shape of the filler affect the thermal conductivity and dielectric properties of Al/PVDF. No variation in the dissipation factor is observed up to 60 wt.% Al. Thermal conductivity and dielectric permittivity values as high as 1.65 W/m K and 230, respectively, as well as a low dissipation factor of 0.25 at 0.1 Hz, are realized for the composites with 80 wt.% spherical Al. 相似文献
10.
Multiwalled carbon nanotubes (MWCNTs) were successfully coated and filled with Sn using a simple method. Bulk thermal conductivity of Sn/SnO filled and coated multiwalled carbon nanotubes (MWCNTs) of ~1 mm thickness pellet by laser method reveals surge in hybrid carbon nanotubes in comparison to pristine nanotubes. The thermal diffusivity and thermal conductivity of hybrid nanotubes are increased to 4.41 mm2/sec, 5.39 Wm?1K?1 of as compared to 0.36 mm2/sec and 0.28 Wm?1K?1 of the pristine nanotubes. The enhancement in thermal conductivity is attributed to the presence of Sn coating on surface and inside the carbon nanotubes and the formation of compact structures by reducing the air gaps between nanotubes because of their joining during compression and sintering. 相似文献
11.
NiFe2O4/Ag复合材料的制备及其耐蚀和导电性能 总被引:1,自引:0,他引:1
以Fe2O3、NiO和Ag2O为主要原料,采用固相烧结工艺制备了NiFe2O4/Ag复合材料,用X射线衍射和扫描电子显微镜对材料的组成和微观结构进行了研究,并测量了样品在冰晶石熔盐中的静态热腐蚀速率及其高温电导率.结果表明,复合材料由NiO、NiFe2O4尖晶石和Ag三相组成.随着Ag2O含量的增多,复合材料的致密化程度先增加而后降低,当Ag2O含量为6%时,试样的致密化程度最高.Ag2O的加入在不提高试样在冰晶石熔盐中的静态热腐蚀速率的前提下,提高了试样的高温电导率. 相似文献
12.
Semi-analytical Mori-Tanaka methods and numerical models for studying the overall thermal conduction behavior of metal matrix composites reinforced by diamond particles are presented, special emphasis being put on the effects of finite interfacial conductances. Good agreement between the simulation approaches is obtained and the influence of particle shapes and homogeneous vs. inhomogeneous interfacial conductances on local and global responses is studied. Analogous methods are applied to modeling the elastic and thermoelastoplastic behavior of diamond reinforced metals. 相似文献
13.
短切炭纤维-炭复合材料的制备及传导性能和微观结构的研究 总被引:4,自引:9,他引:4
以中间相沥青基短切炭纤维和中间相沥青为原料,采用模压成型、炭化、致密化、高温石墨化等一系列常规工艺,制备了传导性能良好的炭/炭复合材料.主要考察了中间相沥青与中间相沥青基炭纤维质量配比对材料密度及传导性能的影响,并进一步研究了材料微晶参数的变化与材料性能的相关性.结果表明中间相沥青与纤维质量配比对材料的导热、导电性能以及微晶参数有很大影响.随着中间相沥青用量的增大,材料导热、导电性能均提高,石墨层间距d002减小,石墨微晶尺寸La、Lc增大;当中间相沥青与炭纤维质量比为 0.8时,制备出的炭/炭复合材料石墨微晶尺寸最大,常温传导性能最佳(垂直于压制方向的面向热导率为385W/(m·K),电阻率为2.85μΩ·m);进一步提高中间相沥青用量,石墨微晶尺寸La、Lc减小,材料的传导性能降低. 相似文献
14.
Qi Yue Chenting Guo Qian Gao Rui Zhang 《Fullerenes, Nanotubes and Carbon Nanostructures》2016,24(12):762-768
In this work, the graphite nanoplatelets/carbon composites were fabricated from graphite nanoplatelets and pitch powders by a hot-pressing technology followed by carbonization and graphitization. The XRD and pole figure results show that the incorporation of pitch induces the decrease of size (La) and orientation degree of graphitic crystallites, while the in-plane thermal conductivity of graphitized sample is increased with the increasing pitch content up to 6 wt.%, achieving a maximum value of 405 W/m K. The pitch binders are filled into the voids to bridge two or more graphite nanoplatelets particles together to form extra thermal paths, which makes a great contribution to the enhancement of thermal conductivity. A thermal conductivity model for the graphitized composites is constructed based on a bridging mechanism, and the predicted results fit well with the experimental results. 相似文献
15.
Graphite/copper composites with high thermal conductivity were fabricated by tungsten addition, which formed a thin tungsten carbide layer at the interface. The microstructure and thermal conductivity of the composite material were studied. The results indicated that the insertion of tungsten carbide layer obviously suppressed spheroidization of copper coating on the graphite particles during the sintering process, and decreased the interfacial thermal resistance of the composites. Compared with the graphite/copper composites without tungsten, the thermal conductivity of the obtained composites was increased by 43.6%. 相似文献
16.
The nonisothermal crystallization kinetics of polypropylene/down feather fiber composites were investigated using a Differential Scanning Calorimeter at five different cooling rates. The Avrami and Liu models were able to satisfactorily describe the crystallization behavior of composites, which indicated the entirely unique mechanism. It was found that fiber/matrix interface and thermal conductivity of fiber had key roles for the crystallization behavior of composites and had a close relationship with the properties of the industrial product reinforced with natural protein fiber. The nucleation activity and activation energies were also calculated by different theoretical models and also proved the experimental results. 相似文献
17.
The anisotropic development of thermal conductivity in polymer composites was evaluated by measuring the isotropic, in-plane and through-plane thermal conductivities of composites containing length-adjusted short and long multi-walled CNTs (MWCNTs). The thermal conductivities of the composites were relatively low irrespective of the MWCNT length due to their high contact resistance and high interfacial resistance to polymer resins, considering the high thermal conductivity of MWCNTs. The isotropic and in-plane thermal conductivities of long-MWCNT-based composites were higher than those of short-MWCNT-based ones and the trend can accurately be calculated using the modified Mori-Tanaka theory. The in-plane thermal conductivity of composites with 2 wt% long MWCNTs was increased to 1.27 W/m·K. The length of MWCNTs in polymer composites is an important physical factor in determining the anisotropic thermal conductivity and must be considered for theoretical simulations. The thermal conductivity of MWCNT polymer composites can be effectively controlled in the processing direction by adjusting the length of the MWCNT filler. 相似文献
18.
Self-assemblies of linearly aligned diamond fillers in polysiloxane/diamond composite films with enhanced thermal conductivity 总被引:1,自引:0,他引:1
Hong-Baek Cho Ayumi Konno Takeshi Fujihara Tsuneo Suzuki Satoshi Tanaka Weihua Jiang Hisayuki Suematsu Koichi Niihara Tadachika Nakayama 《Composites Science and Technology》2011,72(1):112
The relocation of diamond fillers was performed in polysiloxane-based composite films under different electric fields. The microscale diamond filler particles were dispersed by sonication in a prepolymer mixture of polysiloxane, followed by high-speed mixing. The homogeneous suspension was cast onto a polyamide spacer of microscale thickness and subjected to three different electric fields: AC, DC, and switched DC, before the mixture became cross-linked. Analysis revealed that self-assemblies of linearly aligned diamond fillers (LADFs) were fabricated in the composite film, connecting the film planes as bridges with different thicknesses depending on the applied electric field. Composites with assemblies of LADFs exhibited enhanced thermal conductivity and electrical insulation, and are attractive for application as thermal interface materials in the semiconductor industry. 相似文献
19.
二维编织C/SiC陶瓷基复合材料的热传导系数预测 总被引:2,自引:0,他引:2
根据二维编织C/SiC复合材料的细观结构及其制备工艺特点,提出了一种预测该材料热传导系数的单胞模型。模型简化了编织结构纱线的实际构型,充分考虑了编织结构复合材料由于化学气相渗透(CVI)工艺制备陶瓷基复合材料产生的孔洞对热传导系数的影响。利用单胞模型预测了二维编织C/SiC的结构参数、纤维体积含量、孔洞体积含量对复合材料热传导系数的影响规律。结果表明: 随着纤维束扭结处产生间隙与纱线宽度比值的增大,热传导系数减小;当其它参数不变时,热传导系数随着纤维体积含量和孔洞体积含量的增加而下降。利用Hot Disk热测量仪采用瞬变平面热源法测试了二维编织C/SiC复合材料面内的热传导系数,试验结果与模型预测结果吻合较好。 相似文献
20.
Thermal analysis of carbon-nanotube composites using a rigid-line inclusion model by the boundary integral equation method 总被引:1,自引:1,他引:0
The boundary integral equation (BIE) method is applied for the thermal analysis of fiber-reinforced composites, particularly the carbon-nanotube (CNT) composites, based on a rigid-line inclusion model. The steady state heat conduction equation is solved using the BIE in a two-dimensional infinite domain containing line inclusions which are assumed to have a much higher thermal conductivity (like CNTs) than that of the host medium. Thus the temperature along the length of a line inclusion can be assumed constant. In this way, each inclusion can be regarded as a rigid line (the opposite of a crack) in the medium. It is shown that, like the crack case, the hypersingular (derivative) BIE can be applied to model these rigid lines. The boundary element method (BEM), accelerated with the fast multipole method, is used to solve the established hypersingular BIE. Numerical examples with up to 10,000 rigid lines (with 1,000,000 equations), are successfully solved by the BEM code on a laptop computer. Effective thermal conductivity of fiber-reinforced composites are evaluated using the computed temperature and heat flux fields. These numerical results are compared with the analytical solution for a single inclusion case and with the experimental one reported in the literature for carbon-nanotube composites for multiple inclusion cases. Good agreements are observed in both situations, which clearly demonstrates the potential of the developed approach in large-scale modeling of fiber-reinforced composites, particularly that of the emerging carbon-nanotube composites. 相似文献