首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The requirement for improved understanding of the behaviour of turbine disc alloys at elevated temperatures has led to an increased interest in the contribution of time dependant mechanisms to high temperature fatigue crack growth. A study has been conducted on a new powder alloy to investigate the contribution of such mechanisms when the applied waveform is varied in terms of hold periods and the influence of limited thermal exposure is included. Variable waveform tests performed in air at 725°C have indicated that the addition of a hold time at maximum load in a fatigue cycle tends to increase the crack growth rate per cycle in the as heat treated material. Crack growth in thermally exposed material is retarded by up to a 10 s hold time and then accelerated as the hold time increases further. Rapid near crack tip stress relaxation induced by γ′ coarsening is proposed to have a beneficial effect on the severity of this type of damage which causes the crack growth rate reduction for short hold times.  相似文献   

2.
Abstract

The deformation behaviour of near alpha titanium alloy Timetal 834 was investigated by analysing Considére criterion in temperature range between 300 and 500°C at an interval of 25°C. In the dynamic strain aging (DSA) regime (400–475°C) studied in this material, Considére criterion was satisfied partially at peak DSA temperature (450°C). This was attributed to maximum DSA effect at 450°C which eventually resulted in specimen fracture at low ductility levels. Strain hardening exponent (n) values was determined using Ludwik plot, Considére criterion and obtained experimentally from uniform strain. The n values obtained from Ludwik plot and Considére criterion were greater than the uniform strain in DSA regime studied.  相似文献   

3.
Abstract

The effect of aging on fatigue crack growth rate (FCGR) of Cu bearing HSLA-100 steel has been studied. The steel was solution treated, water quenched and aged at various temperatures in the range of 350–700°C. The fatigue crack growth resistance of the steel decreased for the initial stages of aging from 350–500°C. Further aging up to 650°C resulted in an improvement in the crack growth resistance. Beyond 650°C, once again an inferior crack growth resistance was observed. This nature of variation of FCGR behaviour was similar to the trend portrayed by the strength properties with aging treatment. The results are related to the changes in the microstructural constituents owing to the aging treatment.  相似文献   

4.
An as-received reactor pressure vessel (RPV) steel SA508 class 3 (SA508 Cl.3) has been subjected to uniaxial tension tests in the strain-rate range of 6.67 × 10−5 s−1 to 1.2 × 10−2 s−1 and the temperature range of 298 K to 673 K to investigate the effects of temperature and strain rate on its mechanical properties. It was found that the region of dynamic strain aging (DSA) was in the temperature range of 523–623 K at a strain rate of 1.2 × 10−3 s−1, 473–573 K at 1.2 × 10−4 s−1, and 473–573 K at 6.67 × 10−5 s−1, respectively. Serrated stress–strain behaviors, predominately consisting of type A, B, and C, have been observed in these temperatures and strain-rate ranges. The solutes responsible for DSA have been identified to be carbon and nitrogen, and nitrogen atoms play a more important role. The relative DSA mechanisms for this RPV steel are discussed.  相似文献   

5.
6.
Fatigue crack growth behaviour of modified 9Cr–1Mo steel is examined in the temperature range 300–823 K. An improvement in fatigue crack growth resistance is observed in the dynamic strain ageing regime. The activation energy for the process leading to this is estimated from the temperature-dependence of crack tip strain rate as 55–80 kJ/mole. This indicates that dynamic strain ageing due to interaction of dislocations with interstitial solute elements is responsible for the improved fatigue resistance in this range.  相似文献   

7.
Constant amplitude fatigue crack growth tests were carried out on commercial and high purity nanostructured copper processed by High Pressure Torsion (HPT). Due to strong grain refinement the HPT processed materials show higher tensile strength but also faster crack growth rates when compared to coarse grained material. Crack growth curves of nanostructured copper determined at different stress levels, however, showed that the occurrence of grain coarsening at low stress amplitudes leads to a retardation of crack growth in commercial and high purity HPT Cu. This effect was not observed for high purity HPT Cu with a bimodal microstructure. Crack propagation rates depend significantly on the coarsening phenomenon which on the other hand depends on the applied stress amplitude. A comparison of these results with cyclic deformation tests in the high cycle fatigue regime suggests that grain coarsening during crack growth depends more on the stored energy of the materials while a similar coarsening during cyclic deformation depends more on the activation enthalpy for annealing of defects.  相似文献   

8.
Dual phase (DP) steels with network and fibrous martensite were produced by intercritical annealing heat treatment cycles. Some of these steels were deformed at dynamic strain aging temperatures. Room temperature tensile tests of specimens deformed at 300 °C showed that both yield and ultimate tensile strengths for both morphologies increased, while total elongation decreased. Fatigue test results before and after high temperature deformation showed that dynamic strain aging has a stronger effect on fatigue properties of dual phase steels with fibrous martensite. Cracks in DP steels with fibrous martensite propagate in a tortuous path in soft ferrite phase, while they pass of both hard and soft phases in DP steels with network martensite.  相似文献   

9.
This study aims at assessing the applicability of the Master Curve procedure to the measurement of the reference temperature for three well-characterised reactor pressure vessel steels (22NiMoCr37, JSPS, JRQ). The following aspects of the methodology were investigated, using statistical tools such as the Generalised Maximum Likelihood (GML) and Monte Carlo methods: independence of T o from test temperature and specimen type (configuration/dimensions); formula given in ASTM E1921 for evaluating the standard deviation of the reference temperature, and possibile expressions for estimating the standard deviation of the other Weibull parameters (m and K min); proposed relationships for estimating the median toughness and standard deviation for T o(To) in the case of multi-temperature Master Curve analysis. In reference to the three Reactor Pressure Vessel Steels (RPVS) investigated, the independence of T o was assessed from the test temperature (within the range prescribed by the following revision of the ASTM standard, T o±50 °C) and, as far as C(T) specimens are concerned, from the sample dimensions; the well-known 10÷15 °C difference was however found between PCCv and C(T) geometries. Furthermore, using the Monte Carlo method, we assessed the relationship proposed by the ASTM standard for estimating the standard deviation of the reference temperature, which results fairly conservative; an alternative analytical function has been proposed. Clear trends have also been identified for the standard deviation of m (with respect to the number of valid data r) and K min (with respect to the median toughness). Finally, the proposed relationships for estimating K Jc,med and To for the multi-temperature analysis have been validated by comparison with the results of the Monte Carlo method: an excellent agreement was found in terms of To (better than 0.2 °C).  相似文献   

10.
The environmentally-assisted fatigue crack growth (FCG) behavior of high strength steels, the effect of cathodic potential on the FCG rates, and fracture surfaces were examined in some aqueous solutions. The effect of stress ratio on the critical values of maximum stress intensity, as well as cyclic stress intensity range and da/dN, which define quantitatively the role of hydrogen-induced cracking and local anodic dissolution in crack propagation, were also examined.Published inProblemy Prochnosti, Nos. 1–2, pp. 94–102, January–February, 1995.  相似文献   

11.
Fatigue crack growth behaviour of Ti–6Al–2Zr–1.5Mo–1.5V (VT-20 a near-α Ti alloy) was studied in lamellar, bimodal and acicular microstructural conditions. Fatigue crack growth tests at both increasing and decreasing stress intensity factor range values were performed at ambient temperature and a loading ratio of 0.3 using compact tension samples. Lamellar and acicular microstructures showed lower fatigue crack growth rates as compared to the bimodal microstructure due to the tortuous nature of cracks in the former and the cleavage of primary α in the latter. The threshold stress intensity factor range was highest for acicular microstructure.  相似文献   

12.
The fatigue crack growth behaviour of 7050 T73651 high strength aluminium alloy that was originally developed for the aircraft industry was investigated in this study. The tests were conducted by using C-T specimens machined in six orientations under the action of constant amplitude sinusoidal load cycles. The tests were first carried out in laboratory air and then repeated in salt-water fog of a 5% NaCl solution to observe the effect of the environment on the fatigue crack growth behaviour. The experimental results showed that the fatigue life, maximum stress intensity range and the fatigue crack growth rate of the specimens were seriously affected by the environment. The severity of the effect, on the other hand, was observed to be dependent on the orientation. The strongest orientation was determined to be L-S, while the weakest was S-L.  相似文献   

13.
14.
The results of low frequency corrosion fatigue crack growth tests on HY 130 and Q1N steels are reported and compared. The similarities and differences in the response of the two steels to variations in environment and stress ratio are highlighted and discussed in terms of some recent theories of corrosion fatigue crack growth and the impurity element embrittlement of grain boundaries.  相似文献   

15.
Fatigue crack growth (FCG) behaviour in both near-threshold and higher stress intensity range (ΔK) in intercritically annealed dual-phase (DP) steel containing martensite between 32% and 76% in ferrite has been studied in 3·5% NaCl solution. It is shown that the amount of martensite content in dual phase steel has a significant effect on threshold (ΔK th) values and FCG rates. Higher content of martensite in ferrite leads to higher threshold values and lower FCG rates. Further, ΔK th is much higher in 3·5% NaCl solution as compared to that in laboratory air. Fractography studies reveal that in the near-threshold region, fracture surfaces are characterized mainly by intergranular cracking in corrosive (3·5% NaCl solution) environment. Higher threshold values in 3·5% NaCl solution is attributed to the higher crack closure induced by rougher fracture surface and by the strong wedge effects of corrosion products.  相似文献   

16.
Abstract

In this work, the effect of stress dependent creep ductility on the creep crack growth (CCG) behaviour of steels has been investigated by finite element simulations based on ductility exhaustion damage model. The relationship between the transition region of creep ductility and the transition behaviour of CCG rate on da/dt-C* curves has been examined and the CCG life assessments of components and CCG resistance of materials for a wide range of C* were discussed. The results show that with increasing the transition region size of creep ductility, the transition C* region size on da/dt-C* curves increases. With moving transition region position of creep ductility to high stress region (increasing transition stress levels), the transition C* region on the da/dt-C* curves also moves to high C* region. Decreasing transition stress levels and transition region sizes of creep ductility and increasing the lower shelf and upper shelf creep ductility values can improve the CCG resistance of materials. If the extrapolation CCG rate data from the high C* region or from the transition C* region are used in life assessments of the components at low C* region, the non-conservative or excessive conservative results may be produced. Therefore, the CCG rate data should be obtained for a wide range of C* by long term laboratory tests or numerical predictions using the stress dependent creep ductility and model.  相似文献   

17.
Constant-amplitude in-phase and 90° out-of-phase axial-torsional fatigue tests were conducted on tubular specimens made from a medium-carbon steel with three hardness levels obtained from normalizing, quenching and tempering and induction hardening to find the effect of hardness on multiaxial fatigue behaviour. In addition, the same loadings were applied on the normalized solid specimens to investigate the effect of specimen geometry on multiaxial fatigue life. Similar fatigue life variation as a function of hardness was found for in-phase and out-of-phase loadings, with higher ductility beneficial in low-cycle fatigue (LCF) and higher strength beneficial in high-cycle fatigue (HCF). Multiaxial fatigue data were satisfactorily correlated for all hardness levels with the Fatemi–Socie parameter. Furthermore, in order to predict multiaxial fatigue life of steels in the absence of any fatigue data, the Roessle–Fatemi hardness method was used. Multiaxial fatigue lives were predicted fairly accurately using the Fatemi–Socie multiaxial model based on only the hardness level of the material. The applicability of the prediction method based on hardness was also examined for Inconel 718 and a stainless steel under a wide range of loading conditions. The great majority of the observed fatigue lives were found to be in good agreement with predicted lives.  相似文献   

18.
This paper presents a study on the effect of microstructure on the fatigue crack growth (FCG) rate in advanced S355 marine steels in the Paris Region of the da/dN versus ΔK log–log plot. The environments of study were air and seawater (SW), under constant amplitude sinewave fatigue loading. Fundamentally, three phenomena (crack tip diversion, crack front bifurcation and metal crumb formation) were observed to influence the rate of FCG. These phenomena appear to be a function of the material microstructure, environment and crack tip loading conditions. The three factors retarded the crack growth by reducing or redistributing the effective driving force at the main active crack tip. A crack path containing extensively the three phenomena was observed to offer strong resistance to FCG. In SW, the degree of the electrochemical dissolution of the microplastic zone appears to be an additional primary factor influencing FCG in the steels.  相似文献   

19.
The final objective of this study is to improve the mechanical behaviour of composite sandwich structures under dynamic loading (impact or crash). Cellular materials are often used as core in sandwich structures and their behaviour has a significant influence on the response of the sandwich under impact. Syntactic foams are widely used in many impact-absorbing applications and can be employed as sandwich core. To optimize their mechanical performance requires the characterisation of the foam behaviour at high strain rates and identification of the underlying mechanisms.Mechanical tests were conducted on syntactic foams under quasi-static and high strain rate compression loading. The material behaviour has been determined as a function of two parameters, density and strain rate. These tests were complemented by experiments on a new device installed on a flywheel. This device was designed in order to achieve compression tests on foam at intermediate strain rates. With these test machines, the dynamic compressive behaviour has been evaluated in the strain rate range up [6.7 · 10−4 s−1, 100 s−1].Impact tests were conducted on syntactic foam plates with varying volume fractions of microspheres and impact conditions. A Design of Experiment tool was employed to identify the influence of the three parameters (microsphere volume fraction, projectile mass and height of fall) on the energy response. Microtomography was employed to visualize in 3D the deformation of the structure of hollow spheres to obtain a better understanding of the micromechanisms involved in energy absorption.  相似文献   

20.
Abstract

The present investigation concerns effect of prestrain on the precipitation of Cu during aging of directly air cooled Ti–B microalloyed steels. The differential scanning calorimetry studies allow to identify that precipitation of Cu is most prominent between 350 and 500°C. Prestraining of the directly air cooled samples has broadened the temperature range for Cu precipitation with perceptible overlapping with the peaks due to other low temperature reactions like recovery and/or tempering. Fifty per cent prestraining of 1·5 wt-%Cu added steel before aging triggered the precipitation reaction at a temperature ~320°C with pronounced decrease in the activation energy values from 172 to 116 kJ mol?1. Microstructural changes due to prestraining are evident in the micrographs obtained from transmission electron microscope as deformed ferrite laths and formation of cell structures therein. While 15–50% prestraining has increased the strength without much deterioration in ductility; aging of the prestrained samples has improved the strength and ductility concomitantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号