首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study, 65 wt% aligned untreated long hemp fibre/epoxy (AUL) and aligned alkali treated long hemp fibre/epoxy (AAL) composites cured at 70°C using compression moulding were subjected to accelerated weathering using an accelerated weathering chamber with UV-irradiation and water spray at 50°C for four different time periods (250, 500, 750 and 1000 h). After accelerated weathering, tensile strength (TS), flexural strength, Young's modulus (YM), flexural modulus and fracture toughness (K Ic) were found to decrease and impact energy (IE) was found to increase for both AUL and AAL composites. AUL composite had greater overall reduction in mechanical properties than that for AAL composite upon exposure to accelerated weathering environment. FTIR, TGA and WAXRD analyses of the accelerated weathered composites support the results of the deterioration of mechanical properties upon exposure to accelerated weathering environment.  相似文献   

2.
The effects of alkali treatment on the mechanical properties, void contents and morphological of Pennisetum purpureum/glass-reinforced epoxy hybrid composites were studied. The composites were produced using the vacuum infusion method. Pennisetum purpureum fibres were treated with 5 and 10% dilute sodium hydroxide (NaOH) solution for 6?h. The epoxy resin was mixed with either the treated or untreated Pennisetum purpureum/glass fibres to a ratio of 70:30 (by volume). Tensile and flexural tests were performed on the composites in accordance with ASTM D638 and ASTM D790, respectively. The hybrid composites that contained 5% NaOH-treated Pennisetum purpureum fibres exhibited the greatest tensile and flexural strengths with lower void contents. Field-emission scanning electron microscopy fractography supported the findings showing lesser voids and fibre pull-outs suggesting good interfacial bonding between the matrix and reinforcement. The reduced of the void contents is suspected due to the reduced hemicellulose content within the treated Pennisetum purpureum fibre.  相似文献   

3.
This work investigates the mechanisms involved in the improvement of flexural properties of a jute/polyester composite when the reinforcement material has been atmospherically plasma treated using helium gas. All composites were laid-up by hand and cured using a Quickstep? cure cycle. Surface characterization techniques including scanning probe microscopy (SPM), and surface wettability combined with fabric tensile strength, composite flexural strength and composite Mode-I properties have been used to quantify the effects of plasma modification. Flexural strength and modulus increased with plasma treatment time, reaching a maximum at 25 passes before decreasing. SPM topographical analysis showed that roughness of the fibre decreased as the plasma treatment time increased until 25 passes after which the roughness was found to increase again. The coefficient of friction increased rapidly after only a short plasma treatment time (5 passes) whilst wettability continued to increase until 25 passes after which it remained constant. The fabric tensile strength followed the same trend as the flexural properties of the composites. Decreasing fibre surface roughness is postulated as a reason for decreasing Mode-I interlaminar fracture toughness properties of the composites.  相似文献   

4.
The natural fiber reinforced biodegradable polymer composites were prepared with short jute fiber as reinforcement in PLA (Poly lactic acid) matrix. The short jute fiber is successively treated with NaOH at various concentrations (5%, 10%, and 15%) and H2O2. The composites were prepared with untreated and treated short jute fibers at different weight proportions (up to 25%) in PLA and investigated for mechanical properties. The results showed that the composite with successive alkali treated jute fiber at 10% NaOH and H2O2 with 20% fiber loading has shown 18% higher flexural strength than neat PLA and untreated jute/PLA composite. The flexural modulus of the composite at 25% fiber loading was 125% and 110% higher than that of composites with untreated fibers and neat PLA, respectively. The impact strength of composite with untreated fibers at higher fiber weight fraction was 23% high as compared to neat PLA and 26% high compared to composite with treated fibers. The water absorption was more for untreated jute/PLA composite at 25% fiber loading than all other composites. The composite with untreated fibers has high thermal degradation compared with treated fibers but lower than that of pure PLA matrix. The enzymatic environment has increased the rate of degradation of composites as compared to soil burial. Surface morphology of biodegraded surfaces of the composites were studied using SEM method. POLYM. COMPOS., 37:2160–2170, 2016. © 2015 Society of Plastics Engineers  相似文献   

5.
This paper reports the effect of chemical treatment on the mechanical properties of a natural fiber, isora, as reinforcement in unsaturated polyester resin. Isora fiber is separated from the bark of the Helicteres isora plant by a retting process. The short isora fiber surface was modified chemically by acetylation, benzoylation, silane and triton treatments to bring about improved interfacial interaction between the fiber and the polyester matrix. The modified surfaces were characterized by IR spectroscopy and SEM. The SEM studies were carried out to investigate the fiber surface morphology, fiber pull-out and fiber-polyester interface bonding. They showed the changes occuring on the fiber surface during chemical treatment. Properties like tensile strength, flexural strength and impact strength have been studied. The chemical modification of fiber improved fiber/matrix interaction as evidenced by the enhanced tensile and flexural properties. The lower impact properties of the composites, except triton-treated fiber composite, further point to the improved fiber/matrix adhesion, compared to the untreated fiber composites.  相似文献   

6.
《国际聚合物材料杂志》2012,61(3-4):241-254
Abstract

The paper reports on the curing characteristics and mechanical properties of oil palm wood flour (OPWF) reinforced epoxidized natural rubber (ENR) composites. Three sizes of OPWF at different filler loadings were compounded with a two roll mill. The cure (t 90) and scorch times of all filler size decrease with increasing OPWF loading. Increasing OPWF loading in ENR compound resulted in reduction of tensile strength and elongation at break but increased tensile modulus, tear strength and hardness. The composites filled with smaller OPWF size showed higher tensile strength, tensile modulus and tear strength. Scanning electron microscope (SEM) micrographs showed that at lower filler loading the fracture of composites occurred mainly due to the breakage of fibre with minimum pull-out of fibres from the matrix. However as the filler loading is increased, the fibre pull-out became very prominent due to the lack of adhesion between fibre and rubber matrix.  相似文献   

7.
The mechanical performance of short randomly oriented banana and sisal hybrid fiber reinforced polyester composites was investigated with reference to the relative volume fraction of the two fibers at a constant total fiber loading of 0.40 volume fraction (Vf), keeping banana as the skin material and sisal as the core material. A positive hybrid effect is observed in the flexural strength and flexural modulus of the hybrid composites. The tensile strength of the composites showed a positive hybrid effect when the relative volume fraction of the two fibers was varied, and maximum tensile strength was found to be in the hybrid composite having a ratio of banana and sisal 4 : 1. The impact strength of the composites was increased with increasing volume fraction of sisal. However, a negative hybrid effect is observed when the impact strength of the composites is considered. Keeping the relative volume fraction of the two fibers constant, that is, banana : sisal = 0.32 : 0.08 (i.e., 4 : 1), the fiber loading was optimized and different layering patterns were investigated. The impact strength of the composites was increased with fiber loading. Tensile and flexural properties were found to be better at 0.40 Vf. In the case of different layering patterns, the highest flexural strength was observed for the bilayer composites. Compared to other composites, the tensile properties were slightly higher for the composite having banana as the skin material and sisal as the core material. Scanning electron micrographs of the tensile and impact fracture surfaces of the hybrid composites having volume fraction 0.20 and 0.40 Vf were studied. The experimental tensile strength and tensile modulus of hybrid composites were compared with those of theoretical predictions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1699–1709, 2005  相似文献   

8.
The curing kinetics of neat epoxy (NE) and hemp fibre/epoxy composites was studied and assessed using two dynamic models (the Kissinger and Flynn–Wall–Ozawa Models) and an isothermal model (the Autocatalytic Model) which was generally supported by the experimental data obtained from dynamic and isothermal differential scanning calorimetry (DSC) scans. The activation energies for the curing of composites exhibited lower values compared to curing of NE which is believed to be due to higher nucleophilic activity of the amine groups of the curing agent in the presence of fibres. The highest tensile strength, σ was obtained with composites produced with an epoxy to curing agent ratio of 1:1 and the highest Young's modulus, E was obtained with an epoxy to curing agent ratio of 1:1.2. Alkali treated hemp fibre/epoxy (ATFE) composites were found to have higher σ and E values compared to those for untreated hemp fibre/epoxy (UTFE) composites which was consistent with the trend for interfacial shear strength (IFSS) values. Composites σ and E were found to be higher for a processing temperature of 70°C than for 25°C for both UTFE and ATFE composites, but were found to decrease as the curing temperature was increased further to 120°C.  相似文献   

9.
ABSTRACT

Oil palm empty fruit bunch (OPEFB) was heat treated at 180°C using a vacuum oven for one hour, extruded and compounded with high-density polyethylene at 10%, 20% and 30% weight fraction. The composites then were injection moulded into dumb-bell shaped specimens. The effect of composition and heat treatment on the thermal properties of composites were investigated using Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The tensile and flexural properties were also tested using an Instron Universal Testing Machine. TGA shows an increase in the degradation peak temperature of the heat-treated composites. DSC revealed an increasing trend in the degree of crystallinity (Xc) of the matrix as the heat-treated empty fruit bunch was used as a filler. An increment in the tensile modulus and tensile strain were observed for the treated fibre composites. In addition, the tensile strength value was increased for treated fibre composites with lower fibre loading.  相似文献   

10.
Earlier investigations by the authors showed that the tensile modulus of flax fibre mat polypropylene composites (NMT) could surpass the values of glass mat reinforced thermoplastic (GMT) on fibre weight basis. The tensile and flexural strength could reach values of up to 65% of the GMT strength values, however, very much dependent on the fibre physical structure. This study deals with the Charpy impact and the thermo-mechanical properties of flax NMT materials. The trend is that the Charpy impact strength decreases with increasing fibre internal bonding and enhanced fibre-matrix adhesion, which is opposite to the trend for the tensile and flexural properties. The impact strength of the NMT materials is lower than generally reported for GMT materials. Dynamic mechanical thermal analysis reveals that with increasing temperature the storage modulus of the NMT materials reduces more slowly when the fibre internal bonding and the fibre-matrix adhesion are improved. In order to approach the tensile, flexural and impact strength of GMT materials, composites should be based on the strong elementary flax fibres. The axial tensile strength of elementary fibres approaches the strength of glass fibres and the lateral strength of the elementary fibres is higher than the technical flax fibres lateral strength. The thermo-mechanical properties can probably be improved when non-cellulosic material can be removed from the flax fibre surface without damaging the fibre.  相似文献   

11.
In this study, natural sawdust fillers from acacia were mixed with unsaturated polyester resin (UPR), which was prepared by recycling of polyethylene terephthalate (PET) waste bottles to prepare sawdust/UPR composite. PET wastes were recycled through glycolysis and depolymerized to produce a formulation for the resin. The effects of alkali treatment, filler content, and filler size on the tensile, flexural, hardness, and water absorption of the composites were investigated. The results show that the modulus of both tensile and flexural increased with increasing filler contents, but the tensile and flexural strength of composites decreased. The size of sawdust also played a significant role in the mechanical properties, with smaller size sawdust producing higher strength and modulus. This is due to the greater surface area for filler–matrix interaction. The results also show that alkali treatment causes a better adhesion between sawdust and UPR matrix and improves the mechanical properties of the composites. Furthermore, surface treatment reduced the water absorption of composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
The present article summarizes an experimental study on the mechanical and dynamic mechanical behavior of sisal fiber reinforced HDPE composites. Variations in mechanical strength, storage modulus (E′), loss modulus (E″), and damping parameter (tan δ) with the addition of fibers and coupling agents were investigated. It was observed that the tensile, flexural, and impact strengths increased with the increase in fiber loading up to 30%, above which there was a significant deterioration in the mechanical strength. Further, the composites treated with MAPE showed improved properties in comparison with the untreated composites. Dynamic mechanical analysis data also showed an increase in the storage modulus of the treated composites The tan δ spectra presented a strong influence of fiber content and coupling agent on the α and γ relaxation process of HDPE. The thermal behavior of the composites was evaluated from TGA/DTG thermograms. The fiber–matrix morphology in the treated composites was confirmed by SEM analysis of the tensile fractured specimens. FTIR spectra of the treated and untreated composites were also studied, to ascertain the existence of type of interfacial bonds. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3306–3315, 2006  相似文献   

13.
This article concerns the effectiveness of various types and degrees of surface modification of sisal fibers involving dewaxing, alkali treatment, bleaching cyanoethylation and viny1 grafting in enhancing the mechanical properties, such as tensile, flexural and impact strength, of sisal‐polyester biocomposites. The mechanical properties are optimum at a fiber loading of 30 wt%. Among all modifications, cyanoethylation and alkali treatment result in improved properties of the biocomposites. Cyanoethylated sisal‐polyester composite exhibited maximum tensile strength (84.29 MPa). The alkali treated sisal‐polyester composite exhibited best flexural (153.94 MPa) and impac strength (197.88 J/m), which are, respectively, 21.8% and 20.9% higher than the corresponding mechanical properties of the untreated sisal‐polyester composites. In the case of vinyl grafting, acrylonitrile (AN)‐grafted sisal‐polyester composites show better mechanical properties than methyl‐methacrylate (MMA)‐grafted sisal composites. Scanning electron microscopic studies were carried out to analyze the fiber‐matrix interaction in various surface‐modified sisal‐polyester composites.  相似文献   

14.
Hybrid composites prepared by the incorporation of two or more different types of fibres into a single polymer matrix deserve much attention. This method of hybridisation of composites offers a profitable procedure for the fabrication of products while the resulting materials are noted for their high specific strength, modulus and thermal stability. The influence of the relative composition of short sisal/glass fibres, their length and distribution on the tensile properties of short sisal/glass intimately mixed polyethylene composites (SGRP) was examined. Different compositions of sisal and glass such as 70/30, 50/50 and 30/70 have been prepared with varying fibre lengths in the range of 1–10 mm. Emphasis has also been given to the variation of fibre–matrix adhesion with several fibre chemical modifications. Chemical surface modifications such as alkali, acetic anhydride, stearic acid, permanganate, maleic anhydride, silane and peroxides given to the fibres and matrix were found to be successful in improving the interfacial adhesion and compatibility between the fibre and matrix. The nature and extent of chemical modifications were analysed by infrared spectroscopy while improvement in fibre–matrix adhesion was checked by studying the fractography of composite samples using a scanning electron microscope. Assessment of water retention values has been found to be a successful tool to characterize the surface of the stearic acid modified fibres. It was found that the extent of improvement in tensile properties of SGRP varied with respect to the nature of chemical modifications between fibre and matrix. Improved mechanical anchoring and physical and chemical bonding between fibre and polyethylene matrix are supposed to be the reasons for superior tensile strength and Young's modulus in treated composites. Several secondary reasons such as high degree of fibre dispersion and reduced hydrophilicity in chemically modified fibres also are believed to play a role. Among the various chemical modifications, the best tensile strength and modulus was exhibited by the SGRP with benzoyl peroxide treated fibres. This is attributed to the peroxide‐initiated grafting of polyethylene on to the fibres. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
In recent years, sisal fibres have become a promising reinforcement for composites because of their low cost, low density, high specific strength, high specific modulus, easy availability and renewability. However, the poor adhesion between the hydrophilic sisal fibre and the hydrophobic thermoplastic matrices has adversely affected the widespread use of these composites. In this study, argon and air-plasma treatments have been used to modify the fibre surfaces under suitable treatment parameters to improve the compatibility between sisal fibres and polypropylene (PP). Sisal fibres and PP fibres are blended together to form a random mat which is then vacuum hot-pressed into a preimpregnated composite sheet. Mechanical properties such as tensile strength and modulus, flexural strength and modulus, and the storage modulus of the composite sheets improve after the incorporation of plasma-treated fibres. Furthermore, scanning electron microscopy analyses reveal the increased surface roughness of sisal fibre. Surface characterisation has been performed by X-ray photoelectron spectroscopy, showing an increase in oxygen/carbon ratio of sisal fibres after plasma treatment.  相似文献   

16.
Composites were prepared with chemically modified banana fibers in polypropylene (PP). The effects of 40‐mm fiber loading and resin modification on the physical, mechanical, thermal, and morphological properties of the composites were evaluated with scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Infrared (IR) spectroscopy, and so on. Maleic anhydride grafted polypropylene (MA‐g‐PP) compatibilizer was used to improve the fiber‐matrix adhesion. SEM studies carried out on fractured specimens indicated poor dispersion in the unmodified fiber composites and improved adhesion and uniform dispersion in the treated composites. A fiber loading of 15 vol % in the treated composites was optimum, with maximum mechanical properties and thermal stability evident. The composite with 5% MA‐g‐PP concentration at a 15% fiber volume showed an 80% increase in impact strength, a 48% increase in flexural strength, a 125% increase in flexural modulus, a 33% increase in tensile strength, and an 82% increase in tensile modulus, whereas the heat deflection temperature increased by 18°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
Coir, an important lignocellulosic fiber, can be incorporated in polymers like unsaturated polyester in different ways for achieving desired properties and texture. But its high level of moisture absorption, poor wettability and insufficient adhesion between untreated fiber and the polymer matrix lead to debonding with age. In order to improve the above qualities, adequate surface modification is required. In our present work, fiber surface modification was effected through dewaxing, alkali (5%) treatment, aqueous graft copolymerization of methyl methacrylate (MMA) onto 5% alkali treated coir for different extents using CuSO4 – NaIO4 combination as an initiator system and cyanoexhylation with a view to improve the mechanical performance of coir‐polyester composites. Mechanical properties like tensile strength (PS), flexural strength (ES) and impact strength (IS) of the composites as a function of fiber loading and fiber surface modification have been evaluated. Composites containing z5 wt% of fiber (untreated) improved tensile and flexural strength by 30% and 27% respectively in comparison to neat polyester. The work of fracture (impact strength) of the composite with 25 wt% fiber content was found to be 967 J/m. The elongation at break of the composites exhibits an increase with the introduction of fiber, All types of surface modification result In improved mechanical properties of the composites. Significant improvement in mechanical strength was also observed for composites prepared from 5% PMMA grafted fiber.  相似文献   

18.
Industrial hemp fibers were treated with a 5 wt % NaOH, 2 wt % Na2SO3 solution at 120°C for 60 min to remove noncellulosic fiber components. Analysis of fibers by lignin analysis, scanning electron microscopy (SEM), zeta potential, Fourier transform infrared (FTIR) spectroscopy, wide angle X‐ray diffraction (WAXRD) and differential thermal/thermogravimetric analysis (DTA/TGA), supported that alkali treatment had (i) removed lignin, (ii) separated fibers from their fiber bundles, (iii) exposed cellulose hydroxyl groups, (iv) made the fiber surface cleaner, and (v) enhanced thermal stability of the fibers by increasing cellulose crystallinity through better packing of cellulose chains. Untreated and alkali treated short (random and aligned) and long (aligned) hemp fiber/epoxy composites were produced with fiber contents between 40 and 65 wt %. Although alkali treatment generally improved composite strength, better strength at high fiber contents for long fiber composites was achieved with untreated fiber, which appeared to be due to less fiber/fiber contact between alkali treated fibers. Composites with 65 wt % untreated, long aligned fiber were the strongest with a tensile strength (TS) of 165 MPa, Young's modulus (YM) of 17 GPa, flexural strength of 180 MPa, flexural modulus of 9 GPa, impact energy (IE) of 14.5 kJ/m2, and fracture toughness (KIc) of 5 MPa m1/2. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
This article reports the mechanical, thermal, and morphological properties of polypropylene (PP)‐chicken eggshell (ES) composites. Mechanical properties like tensile strength, tensile modulus, izod impact strength, flexural modulus of PP composites with normal (unmodified) eggshell and chemically treated ES [modified ES (MES) with isophthalic acid] have been investigated. PP–calcium carbonate (CaCO3) composites, at the same filler loadings, were also prepared and used as reference. The results showed that PP composites with chemically MES had better mechanical properties compared to the unmodified ES and CaCO3 composites. An increase of about 3–18% in tensile modulus, 4–44% in izod impact strength and 1.5–26% in flexural modulus at different filler loading was observed in MES composites as compared to unmodified ES composites. Scanning electron microscopy (SEM) micrographs of fractured tensile specimens confirmed better interfacial adhesion of MES with polymer matrix resulting into lower voids and plastic deformation resulting in improved mechanicals of the composites. TEM micrographs showed acicular needle shaped morphology for modified ES and have contributed to better dispersion which is the prime reason for enhancement of all the mechanical properties. At higher filler loading, the modulus of MES composite was found to be higher by 5% as compared to commercial CaCO3 composites. POLYM. COMPOS., 35:708–714, 2014. © 2013 Society of Plastics Engineers  相似文献   

20.
Recycling and reusing fibrous waste is one of the most important environmental tasks that face the world, to reduce environmental loading and promote the most effective use of resources. In this study, the shuttle-less loom silk selvedge waste and wool fibres were used to produce functional composites. First, the silk selvedge waste was opened and converted into fibrous form. The opened silk fibres were mixed with wool and polypropylene staple fibres in the proportions of 35/15/50, 35/35/30 and 15/35/50. The functional composites were produced by compression moulding technique with optimum process conditions. The effect of silk and wool fibre content on the mechanical properties of silk/wool hybrid fibre polypropylene composites was studied by measuring the tensile strength, flexural strength and impact strength of the resultant composite material. The thermal conductivity and water uptake properties of the composites were also studied. The morphology of silk/wool hybrid fibre polypropylene composites was analyzed by scanning electron microscopy technique. It was found that the composite containing 35/15/50 silk/wool/polypropylene showed the best performance in mechanical properties. The tensile, flexural and impact strengths of 35/15/50 silk/wool/polypropylene composite sample were found to be 30.21 MPa, 19.88 MPa and 0.713 J, respectively. The results also showed that the thermal conductivity was the least while the silk and wool fibre contents were the most in the composite. The water absorption study showed that the composite containing more fibre content possessed maximum water uptake properties. The study strongly suggests that the silk/wool hybrid fibre polypropylene composite materials are quite capable of serving as a potential cost effective, technologically viable, and attractive substitute to the conventional glass epoxy composites used as electrical insulating materials in printed circuit boards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号