首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integration of carbon-doped GaInP/GaAs heterojunction bipolar transistors (HBTs) and high electron mobility transistors (HEMTs) is demonstrated by growing an HBT on the top of a HEMT. A current gain of 60, a cutoff frequency of 59 GHz and a maximum oscillation frequency of 68 GHz were obtained for a 5×15 μm2 self-aligned HBT. The HEMT, with a gate length of 1.5 μm has a transconductance of 210 mS/mm, a cutoff frequency of 9 GHz and a maximum oscillation frequency of 22 GHz. It is shown that the GaInP/GaAs HBT on the HEMT is a simple Bi-FET technology suitable for microwave and mixed signal applications  相似文献   

2.
Quasiplanar GaInP/GaAs heterojunction bipolar transistors (HBTs) with selective regrowth of the collector contact are reported. Such devices have a planar surface topology which should allow large scale integration. The multilayer HBT structure and the selective regrown collector contact are realised by chemical beam epitaxy (CBE). Cutoff frequency and maximum oscillation frequency of 30 and 25 GHz respectively, have been obtained for devices with 2*15 mu m/sup 2/ emitter-base junction area.<>  相似文献   

3.
GaInP/GaAs heterojunction bipolar transistors (HBT's) have been fabricated on epitaxial layers grown by chemical beam epitaxy (CBE) using an all metalorganic approach. Reduced toxicity tertiarybutylarsine (TBA) and tertiarybutylphosphine (TBP) were used for group V sources. DC results showed good base and collector current ideality factors of 1.23 and 1.05 respectively. The maximum DC current of 50 was obtained. A comparison of these results with HBT characteristics obtained using AsH 3/PH3 or TBA/PH3 demonstrates the feasibility of replacing the toxic AsH3 and PH3 by less toxic TBA and TBP sources in the growth of GaInP/GaAs HBT's  相似文献   

4.
We report on the dc and microwave performance of an MOCVD-grown carbon-doped GaInP/GaAs double heterojunction bipolar transistor (DHBT) with a thin highly doped n-type GaInP layer in the collector. The DHBT showed improved current-voltage characteristics at low collector-emitter bias compared with those of a DHBT without the heavily doped GaInP layer, while maintaining a high breakdown voltage (BVCEO~20 V). Small area, self-aligned emitter transistors with two 2×5 μm2 emitter fingers were fabricated and exhibited fT and fmax of 53 GHz and 75 GHz, respectively. These results indicate the promise of carbon-doped base GaInP/GaAs DHBT's for high-power microwave applications  相似文献   

5.
The use of GaInP/GaAs heterojunction bipolar transistors (HBTs) for integrated circuit applications is demonstrated. The discrete devices fabricated showed excellent DC characteristics with low Vce offset voltage and very low temperature sensitivity of the current gain. For a non-self-aligned device with a 3-μm×1.4-μm emitter area, fT was extrapolated to 45 GHz and fmax was extrapolated to 70 GHz. The measured 1/f noise level was 20 dB better than that of AlGaAs HBTs and comparable to that of low-noise silicon bipolar junction transistors, and the noise bump (Lorentzian component) was not observed. The fabricated gain block circuits showed 8.5 dB gain with a 3-dB bandwidth of 12 GHz, and static frequency dividers (divide by 4) were operable up to 8 GHz  相似文献   

6.
一种宽带的InGaP/GaAs HBT 再生频率分频器   总被引:1,自引:1,他引:0  
A dynamic divide-by-two regenerative GaP/GaAs heterojunction bipolar transistors (HBTs) frequency divider (RFD) is presented in a 60-GHz-fT Intechnology. To achieve high operation bandwidth, active loads instead of resistor loads are incorporated into the RFD. On-wafer measurement shows that the divider is operating from 10 GHz up to at least 40 GHz, limited by the available input frequency. The maximum operation frequency of the divider is found to be much higher than fT/2 of the transistor, and also the divider has excellent input sensitivity. The divider consumes 300.85 mW from 5 V supply and occupies an area of 0.47 × 0.22 mm^2.  相似文献   

7.
A compact heterojunction bipolar transistor (HBT) model was employed to simulate the high frequency and high power performances of SiC-based bipolar transistors. Potential 6H-SiC/3C-SiC heterojunction bipolar transistors (6H/3C-HBT's) at case temperatures of 27°C (300 K) through 600°C (873 K) were investigated. The high frequency and high power performance was compared to AlGaAs/GaAs HBT's. As expected, the ohmic contact resistance limits the high frequency performance of the SiC HBT. At the present time, it is only possible to reliably produce 1×10-4 Ω-cm2 contact resistances on SiC, so an fT of 4.4 GHz and an fmax of 3.2 GHz are the highest realistic values. However, assuming an incredibly low 1×10-6 Ω-cm2 contact resistance for the emitter, base, and collector terminals, an fT of 31.1 GHz and an fmax of 12.7 GHz can be obtained for a 6H/3C-SiC HBT  相似文献   

8.
We report the first large-signal power result from a double heterojunction bipolar transistor (DHBT) based on the GaInP/GaAs/GaInP material system. A CW output power of 1.51 W and a power added efficiency of 52% were achieved at 3 GHz. Because the GaInP collector has a relatively high bandgap of 1.89 eV, high DC bias voltage operation with collector bias extending to 20 V (for a 40-V swing) is possible in this GaInP/GaAs/GaInP DHBT. This high DC bias voltage operation represents a unique advantage over the more conventional AlGaAs/GaAs HBT  相似文献   

9.
The microwave performance of a self-aligned GaInP/GaAs heterojunction bipolar transistor (HBT) is presented. At an operating current density of 2.08×104 A/cm2, the measured cutoff frequency is 50 GHz and the maximum oscillation frequency extrapolated from measured unilateral gain and the maximum available gain are 116 and 81 GHz, respectively, all using 20-dB/decade slopes. These results are compared with other reported high-frequency performances of GaInP HBTs. In addition, these results are compared with AlGaAs/GaAs HBTs having a similar device structure  相似文献   

10.
The low-phase-noise GaInP/GaAs heterojunction bipolar transistor (HBT) quadrature voltage controlled oscillator (QVCO) using transformer-based superharmonic coupling topology is demonstrated for the first time. The fully integrated QVCO at 4.87GHz has phase noise of -131dBc/Hz at 1-MHz offset frequency, output power of -4dBm and the figure of merit (FOM) -198dBc/Hz. The state-of-the-art phase noise FOM is attributed to the superior GaInP/GaAs HBT low-frequency device noise and the high quality transformer formed on the GaAs semi-insulating substrate.  相似文献   

11.
We have fabricated InGaP/GaAs double heterojunction bipolar transistors with a sidewall base contact structure. These transistors operate in both emitter-up and emitter-down modes. Symmetric characteristics of the cutoff frequency fT=68 GHz and the maximum oscillation frequency fmax=31 GHz were obtained at a base-collector bias VBC of 0 V. For emitter-down operation, f T was found to reach a maximum of 78 GHz when the base-collector junction was forward biased at 0.9 V. The product of f T for emitter-down operation and fT for emitter-up operation was 5.3×103 GHz2, which is about six times that of previously reported SiGe heterojunction bipolar transistors  相似文献   

12.
Carbon-doped GaInP/GaAs heterojunction bipolar transistors (HBT's) and heterostructure-emitter bipolar transistors (HEBT's) grown by MOCVD were fabricated. Experimental comparison of HBT's and HEBT's has been made based on the dc and the RF performance. HBT's have higher current gains than those of HEBT's in the high current regime, while HEBT's offer a smaller offset voltage and better uniformity in dc characteristics across the wafer. The current gain and cutoff frequency of the DEBT with a 150 Å emitter set-back layer are comparable to those of HBT's. DC (differential) current gains of 600 (900) and 560 (900) were obtained at a collector current density of 2.5×104 A/cm2 for the HBT and HEBT, respectively. The cutoff frequencies are 37 and 31 GHz for the HBT and HEBT, respectively. It is shown that there is negligible contribution of the diffusion capacitance to the emitter capacitance in HEBT's with a thin emitter set-back layer but not with a thick emitter set-back layer. The behavior of HEBT's both in dc and RF characteristics is similar to that of HBT's  相似文献   

13.
A C-doped GaInP/GaAs heterojunction bipolar transistor (HBT) with a selective buried sub-collector has been fabricated by two growth steps. The active HBT region was made on the selective buried sub-collector layer with minimum overlap of the extrinsic base and the sub-collector region resulting in substantial reduction of the base-collector capacitance. The experiment shows that the base-collector capacitance is reduced to about half of that of a conventional HBT while the base resistance remains unchanged resulting in a 40-50% increase in the maximum oscillation frequency. Both DC and RF characteristics are investigated and compared with a conventional HBT. A current gain of 40, cutoff frequency of 50 GHz and maximum oscillation frequency of 140 GHz were obtained for the GaInP/GaAs HBT. It is demonstrated that the selective buried sub-collector provides an effective means for enhancing RF performance of an HBT  相似文献   

14.
《Solid-state electronics》1986,29(2):269-271
Excellent device performance at both d.c. and microwave frequencies has recently been obtained from GaAs based devices grown on Si substrates. In GaAs MESFETs on Si, current gain cutoff frequencies and maximum oscillation frequencies of fT = 13.3 GHz and fmax = 30 GHz have been obtained for 1.2 μm devices, which is nearly identical to the performance achieved in GaAs on GaAs technology for both direct implant and epitaxial technology. For heterojunction bipolar transistors, current gain cutoff frequencies and maximum oscillation frequencies of fT = 30 GHz and fmax = 11.3 GHz have been obtained for emitter dimensions of 4 × 20 μm2. These results compare with the best reported HBT on GaAs substrates of fT = 40 GHz and fmax = 26 GHz with much smaller geometry. Given the performance already demonstrated in AaAs on Si devices and the advantages afforded by this technology, the growth of III–Vs on Si promises to play an important role in the future of heterojunction electronics.  相似文献   

15.
InGaP/GaAs heterojunction bipolar transistors (HBTs) with polycrystalline GaAs buried under the base electrode have been fabricated using low-temperature gas-source molecular beam epitaxy on SiO2-patterned substrates. A cutoff frequency of 120 GHz and a maximum oscillation frequency of 230 GHz were obtained for three parallel 0.7×8.5 μm HBTs. Compared to HBTs without the polycrystal, the collector capacitance was reduced by 28% and the maximum stable gain was improved by 1.2 dB due to complete carrier depletion in the polycrystal under the base electrode. These results show the high potential of the proposed HBTs for high-speed digital and broadband-amplifier applications  相似文献   

16.
严北平  张鹤鸣  戴显英 《电子学报》2000,28(11):132-134
利用微空气桥隔离和自对准技术成功地研制出了自对准结构的AlGaAs/GaAs异质结双极晶体管.器件展现出良好的直流和高频特性.对于发射极面积为2μm×15μm的器件,直流电流增益大于10,失调电压(Offsetvoltage)200mV;电流增益截止频率fT大于30GHz,最高振荡频率fmax约为50GHz.  相似文献   

17.
It is shown that the entire structure of high-quality AlGaAs/GaAs heterojunction bipolar transistors (HBTs) including a nonalloyed δ-doped ohmic contact and in-situ Al metallization can be grown by chemical beam epitaxy (CBE) using a new precursor, trimethylamine alane, as the Al source. The graded AlxGa1-xAs and uniform GaAs bases (both ~1000 A thick) are doped with carbon to high 10 19 cm-3 using trimethyl-Ga. A current gain of 10 at a current density of 2500 A/cm2 is obtained for both uniform- and graded-base HBTs. Both devices show good output characteristics  相似文献   

18.
A wideband GaInP/GaAs heterojunction bipolar transistor (HBT) micromixer from DC to 8 GHz with 11 dB single-ended conversion gain is demonstrated. The input return loss is better than 10 dB for frequencies up to 9 GHz. The single-to-differential input stage in a Gilbert micromixer renders good wideband frequency response and eliminates the need for common-mode rejection. IP/sub 1dB/=-17 dBm and IIP/sub 3/=-7 dBm are achieved for a small local oscillator power of -2 dBm when LO=5.35 GHz and RF=5.7 GHz.  相似文献   

19.
InP/In0.53Ga0.47As/InP double heterojunction bipolar transistors (HBTs) were grown on GaAs substrates. A 140 GHz power-gain cutoff frequency fmax and a 207 GHz current-gain cutoff frequency fτ were obtained, presently the highest reported values for metamorphic HBTs. The breakdown voltage BVCEO was 5.5 V, while the dc current gain β was 76. High-thermal-conductivity InP metamorphic buffer layers were employed in order to minimize the device-thermal resistance  相似文献   

20.
GaAs/AlGaAs collector-top heterojunction bipolar transistors with magnesium and phosphorus double-implanted external bases were fabricated. A cutoff frequency of 17 GHz and a gate delay time of 63 ps for DCTL were obtained. These results indicate the potential of collector-top HBTs for high-speed ICs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号