首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
本文研究了氢处理对铸造钛合金的低周疲劳寿命及断裂韧性的影响,发现经氢处理后铸造钛合金粗大的魏氏组织转变成细小的等轴组织,其应变低周疲劳寿命大大延长,在低周疲劳过程中,应变量较小时,试样出现循环硬化现象,而在应变量较大时,出现循环软化现象,氢处理后材料的断裂形式由脆性断裂转为韧性断裂;断裂韧性提高。  相似文献   

2.
研究了ZTC4钛合金应变控制的室温低周疲劳行为,对循环应力-应变和应变疲劳寿命数据进行了分析,通过双对数线性回归处理,得出了Manson-Coffin处理模型的疲劳参数。结果表明:ZTC4钛合金总应变幅在0.6%~0.8%时,材料存在轻度循环软化的现象;总应变幅为0.4%~0.5%时,循环初期表现出循环硬化的现象,而后循环软化。合金的疲劳裂纹萌生于试样表面,裂纹扩展区存在明显的疲劳条带,合金疲劳断口呈现韧性断裂特征。  相似文献   

3.
研究高峰值应力条件下Ti60钛合金双态组织和片层组织的低周疲劳与保载疲劳性能,利用金相显微镜(OM)、扫描电子显微镜(SEM)和电子背散射衍射(EBSD)等观察和分析Ti60钛合金的显微组织与疲劳断裂行为。结果表明:显微组织对低周疲劳性能影响不大,但显著影响保载疲劳性能,双态组织保载疲劳敏感性大于片层组织;保载情况下,疲劳寿命显著下降;随峰值应力的提高,疲劳寿命下降,保载疲劳敏感性增加;相同循环周次内,保载疲劳塑性应变累积大于低周疲劳,双态组织的塑性应变累积大于片层组织;低周疲劳裂纹萌生于试样表面,为单裂纹源,而保载疲劳裂纹为内部多源萌生;断口表面均存在准解理小平面,双态组织断口准解理小平面密度大于片层组织。  相似文献   

4.
本文给出了TA5钛合金的低周疲劳性能试验数据。研究了主冷凝器在循环载荷下,材料循环硬化或软化特性、应力与应变曲线以及应变与寿命的关系,并预示了低周疲劳寿命。此外,对疲劳断口进行了分析对比。  相似文献   

5.
循环应力和低周疲劳寿命都是材料疲劳损伤的关键指标.循环应力表征的是材料在循环载荷下抵抗变形的能力.大多数飞机构件由于拐角、圆孔、沟槽等的存在都会存在应力集中现象,当构件承受循环应力载荷时,虽然构件总体处于弹性范围内,但局部已进入弹塑性状态,即已处于循环应变的疲劳过程中.这类服役条件下的构件疲劳寿命一般小于105周次,称为低周疲劳,又由于低周疲劳断裂时应力水平往往较高,低周疲劳也称高应力疲劳或者应变疲劳.衡量材料抗低周疲劳特性的指标主要有低周疲劳极限和低周疲劳寿命,二者统称材料的低周疲劳性能.低周疲劳极限,是指材料所承受应力低于该应力极限值时其理论循环次数可为无限次;低周疲劳寿命,即构件破坏前能承受应力循环的次数.  相似文献   

6.
研究了铸造铝合金AlSi9Cu3在不同应变幅值下的单轴低周疲劳行为。利用MTS疲劳实验机测试了材料的宏观疲劳性能,揭示了应变幅与疲劳寿命之间的关系,使用金相和扫描电子显微镜观察样品的疲劳断口,并对其进行分析。研究结果表明,铸造铝合金AlSi9Cu3在应变控制下表现为循环硬化,且应变幅值越大硬化速率越高;应变幅值越大,其寿命越短;合金塑性应变、弹性应变与断裂时的载荷反向次数之间呈直线关系,实验结果符合Coffin-Manson公式。对材料的疲劳断口在SEM下观察,发现疲劳条纹的宽度和应变幅值相关,疲劳损伤程度也与应变幅值相关。  相似文献   

7.
应变控制比例及非比例载荷低周疲劳试验结果表明,非比例载荷下钛合金BT9附加强化程度很小,而疲劳寿命降低明显.采用透射电镜(TEM)对钛合金BT9的疲劳位错亚结构进行了观测和分析,结果表明,钛合金BT9比例、非比例载荷下出现的多滑移位错亚结构都呈条块状;位错密度随等效应变强度、相位角的增加而增加,且分布极不均匀;非比例载荷下钛合金BT9中的局部高密度位错是其低周疲劳损伤程度加剧及寿命降低的主要因素.  相似文献   

8.
通过AZ91D室温环境应力控制下的低周疲劳试验,对铸造镁合金棘轮及其低周疲劳行为进行了研究,讨论了室温环境下材料的应力循环特性、棘轮行为、塑性应变范围、全应变范围等疲劳参量随载荷水平和加载历史的变化规律,同时基于平均应力修正对材料的应力-寿命曲线进行了讨论。研究结果表明:AZ91D在室温环境下的应力循环呈循环硬化,材料的棘轮行为和塑性应变范围、全应变范围等疲劳参量依赖于载荷水平和加载历史,另外考虑平均应力修正后的应力-寿命曲线预测效果有明显改观。  相似文献   

9.
研究了Ti-6Al-4V钛合金细晶等轴组织的应变疲劳性能及其断裂行为.实验结果表明,Ti-6Al-4V铁合金的应变疲劳的过渡疲劳寿命Nt约为560个循环周次,其疲劳行为具有非常明显的循环软化特性.在不同应变幅测试条件下,均为多源疲劳萌生模式.Ti-6Al-4V合金应变疲劳断口表面大量的二次裂纹特征说明该合金具有优异的应变疲劳性能.  相似文献   

10.
无铅焊料Sn-3.8Ag-0.7Cu的低周疲劳行为   总被引:2,自引:0,他引:2  
测量了Sn-3.8Ag-0.7Cu无铅焊料试样的循环滞后回线、循环应力响应曲线、循环应力-应变和应变寿命关系,研究了焊料在总应变幅控制下的低周疲劳行为结果表明:该焊料合金在总应变幅较高(1%)时发生连续的循环软化,而在总应变幅较低(≤0.4%)时则表现为循环稳定.线性回归分析表明,该焊料的低周疲劳寿命满足Coffin-Manson经验关系式,由此给出了焊料在室温下的低周疲劳参数.采用扫描电镜观测和分析了焊料在疲劳前后的组织特征.  相似文献   

11.
In the present paper, thermo-mechanical fatigue (TMF) and low cycle fatigue (LCF) or isothermal fatigue (IF) lifetimes of a cast magnesium alloy (the AZ91 alloy) were studied. In addition to a heat treatment process (T6), several rare elements were added to the alloy to improve the material strength in the first step. Then, the cyclic behavior of the AZ91 was investigated. For this objective, strain-controlled tension–compression fatigue tests were carried out. The temperature varied between 50 and 200 °C in the out-of-phase (OP) TMF tests. The constraint factor which was defined as the ratio of the mechanical strain to the thermal strain, was set to 75%, 100% and 125%. For LCF tests, mechanical strain amplitudes of 0.20%, 0.25% and 0.30% were considered at constant temperatures of 25 and 200 °C. Experimental fatigue results showed that the cyclic hardening behavior occurred at the room temperature in the AZ91 alloy. At higher temperatures, this alloy had a brittle fracture. But also, it was not significantly clear that the cyclic hardening or the cyclic softening behavior would be occurred in the material. Then, the high temperature LCF lifetime was more than that at the room temperature. The OP-TMF lifetime was the least value in comparison to that of LCF tests. At the end of this article, two energy-based models were applied to predict the fatigue lifetime of this magnesium alloy.  相似文献   

12.
This paper describes the main results from an investigation into the strength and low‐cycle fatigue (LCF) behavior of a rolled plate of WE43 Mg alloy in its T5 condition at room temperature. The alloy was found to exhibit small tension/compression yield asymmetry and small anisotropy being stronger in transverse direction (TD) than in rolling direction (RD) along with some anisotropy in strain hardening. The LCF tests were conducted under strain‐controlled conditions with the strain amplitudes ranging from 0.6% to 1.4% without the mean strain component. While the stress amplitudes during the LCF were higher for tests along TD than RD, the LCF life was similar for both directions. As revealed by electron microscopy, the fractured surfaces under tension consisted mainly of microvoid coalescence with some transgranular facets, while those fractured in LCF showed a combination of intergranular fracture and transgranular facets with minor content of microvoid coalescence.  相似文献   

13.
A study has been made to understand the cyclic fatigue and cyclic fracture characteristics of a cast aluminium alloy metal matrix discontinuously reinforced with particulate silicon carbide. The Al/SiCp composite was strained to failure over a range of strain amplitudes giving lives of less than 104 cycles to failure. The specimens were cycled by using tension-compression loading under total strain control. In the as-cast condition, the aluminum-alloy/ceramic composite displayed combinations of cyclic hardening and softening to failure at higher cyclic-strain amplitudes, and progressive softening to failure at low cyclic-strain amplitudes. The spray-atomized and deposited composite exhibited softening to failure at the higher cyclic-strain amplitudes and combinations of softening and hardening behavior at the lower strain amplitudes. The observed hardening and softening behavior is a mechanical effect and attributed to concurrent and competing influences of interactions between cyclic deformation and composite microstructure during cyclic straining. The processed microstructure exhibited better cyclic ductility and cyclic-strain resistance than the as-cast composite microstructure. The cyclic fatigue behavior of the alloy is briefly interpreted in the light of composite microstructural effects, plastic strain amplitude and concomitant response stress.  相似文献   

14.
The cyclic stress–strain response and the low cycle fatigue (LCF) behavior of Cr–Mo–V low alloy steel which was used for forged railway brake discs was studied. Tensile strength and LCF properties were examined over a range from room temperature (RT) to 600 °C using specimens cut from circumferential direction of a forged disk. The fully reversed strain-controlled LCF tests were conducted at a constant total strain rate with different axial strain amplitude levels. The cyclic strain–stress relationships and the strain–life relationships were obtained through the test results, and related LCF parameters of the steel were calculated. The studied steel exhibits cyclic softening behavior and behaves Masing type, especially at higher strain amplitudes. At higher than 600 °C, carbide particles aggregated and a decarburized layer developed near the specimen surface. Micro voids distribute within the depth of 50 μm from the specimen surface could coalesce with fatigue cracks. Multiple crack initiation sites were observed on the fracture surface. The oxide film that generated at 600 °C covered the fatigue striations and accelerated the crack propagation. Final fracture area with bigger and deeper dimples showed better ductility at higher temperature. The investigated LCF behavior can provide reference for brake disc life assessment and fracture mechanisms analysis.  相似文献   

15.
The strain versus fatigue life and fracture behavior of spray-formed Al–Si composites reinforced with SiC particles of two different sizes were studied under total strain amplitudes. Both composites exhibit short low-cycle fatigue (LCF) which follows a Coffin-Manson relationship, and display cyclic hardening at all strain amplitudes. The LCF endurance of the composite with large particles is higher than that of composite containing small particles in the high strain amplitudes, however, at low strains the difference in fatigue endurance between the two composites decreased. Moreover, the decrease in particle size results in a higher degree of hardening at low and middle strains, but reduces the magnitude of hardening at highest strain. Fractographic analysis reveals that particle/matrix debonding is the main mechanism of failure in composite with small particles, while fracture and debonding of SiC particle are predominant in the large particle reinforced composite.  相似文献   

16.
The drive for increasing fuel efficiency and decreasing anthropogenic greenhouse effect via lightweighting leads to the development of several new Al alloys. The effect of Mn and Fe addition on the microstructure of Al‐Mg‐Si alloy in as‐cast condition was investigated. The mechanical properties including strain‐controlled low‐cycle fatigue characteristics were evaluated. The microstructure of the as‐cast alloy consisted of globular primary α‐Al phase and characteristic Mg2Si‐containing eutectic structure, along with Al8(Fe,Mn)2Si particles randomly distributed in the matrix. Relative to several commercial alloys including A319 cast alloy, the present alloy exhibited superior tensile properties without trade‐off in elongation and improved fatigue life due to the unique microstructure with fine grains and random textures. The as‐cast alloy possessed yield stress, ultimate tensile strength, and elongation of about 185 MPa, 304 MPa, and 6.3%, respectively. The stress‐strain hysteresis loops were symmetrical and approximately followed Masing behavior. The fatigue life of the as‐cast alloy was attained to be higher than that of several commercial cast and wrought Al alloys. Cyclic hardening occurred at higher strain amplitudes from 0.3% to 0.8%, while cyclic stabilization sustained at lower strain amplitudes of ≤0.2%. Examination of fractured surfaces revealed that fatigue crack initiated from the specimen surface/near‐surface, and crack propagation occurred mainly in the formation of fatigue striations.  相似文献   

17.
Abstract—The low cycle fatigue (LCF) behavior of two aluminum-lithium alloys was investigated. Efforts were aimed at understanding the effects of microstructure on the cyclic stress-strain behavior and methods by which different microstructures accommodate plastic strain. These goals were achieved by analyzing the cyclic response and the deformed microstructure of each alloy. Direct-chill cast and rolled X2095 exhibited immediate cyclic softening followed by a plateau region. Strain was distributed in a homogeneous manner throughout the microstructure. Mechanically alloyed and forged AA5091 (formerly referred to as 905XL) also deformed in a homogeneous manner, but the cyclic response was characterized by initial softening followed by gradual hardening. Over-strain loops were applied during some of the LCF tests, the purpose of which was to simulate the strain history of the material ahead of a growing fatigue crack during a tensile overload. The over-strain response suggested that the intrinsic material response does not contribute to crack retardation in X2095 or AA5091.  相似文献   

18.
This paper presents the results of an investiga-tion of the effect of hydrogen treatment onmicrostructures and tensile and low cycle fatigueproperties of a Ti-6Al-4V cast alloy.The phasetransformation and the refining mechanism of thecast microstructure during the process of hydrogentreatment were studied.It was found that afterhydrogen treatment,the coarse Widmanstttenstructure of the as-cast Ti alloy was transformedinto a very fine and equiaxed α+β microstructurewithout any GBα phase.The tensile strength andductility and the low cycle fatigue life of thehydrogen treated specimens were significantly im-proved.  相似文献   

19.
Low cycle fatigue (LCF) behaviour of a modified 9Cr–1Mo steel under normalized and tempered conditions is reported. The alloy was normalized at 1313K for 1 h followed by tempering at 1033K for 1 h, which resulted in a tempered martensitic structure. Total axial strain controlled LCF tests were conducted at a constant strain rate of 3×10−3 s−1 at different strain amplitudes varying from ±0.25 to ±1.0% in the temperature range of 300–873K. The cyclic stress response behaviour, in general, showed an initial brief hardening for the first few cycles, followed by a continuous and gradual softening regime that ended in a stress plateau that continued up to the specimen failure. The fatigue life decreased as the temperature increased. The temperature effect on life was more pronounced at low strain amplitudes. The metallography of the failed samples revealed that the fatigue failure at high amplitudes of testing was marked by extensive crack branching and the formation of secondary cracks. Oxidation was found to exert major influence on LCF life reduction at 873K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号