首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Matching habitat typology and ecological assemblages can be useful in environmental management. We examined whether a priori defined riverine sections correspond with distinct fish assemblage types along the >2000 km long course of the Danube River, Europe. We also tested whether different sampling methods (i.e. day and night inshore electric fishing and offshore benthic trawling) provide consistent typological results. Analysis of assemblage similarities, indicator species analysis, non‐metric multidimensional scaling (NMDS) and k‐means analyses indicated that fish assemblages of the a priori defined Upper‐, Middle and Lower‐Danubian sections differed slightly, but within class variability was high. Although indicator species analysis showed that the Upper‐Danube belongs to the barbel (Barbus barbus) zone and the Middle‐ and Lower Danube belong to the bream (Abramis spp) zone, indicator values of the character species were generally low. The NMDS analyses suggested a weak gradient in assemblage structure along the course of the river with relatively high variability between neighbouring sites. K‐means analyses revealed that many sampling sites were in a different class than the a priori defined sections, and classifications at other group numbers did not lead to better classification outcome. Overall, the results do not suggest clearly distinguishable assemblage types with distinct boundaries in the potamal section of a great river. Nevertheless, the division of the potamon to smaller sections may explain some variability in fish assemblage structure, and could be used for bioassessment purposes. The study also shows the importance of multihabitat and multigear surveys in the typological assessment of great rivers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Reservoirs are important components of modern aquatic ecosystems that have negative impacts on native aquatic biota both up‐ and downstream. We used a landscape‐scale geographic information system (GIS) approach to quantify the spatial effects of 19 large reservoirs on upstream prairie fish assemblages at 219 sites in Kansas, USA. We hypothesized that fish assemblage structure would vary with increasing distance from a reservoir and that the abundance of reservoir fishes in upstream reaches would decline with distance from a reservoir. Ordination of sample sites showed variation in fish assemblage structure occurred primarily across river basins and with stream size. Variance partitioning of a canonical ordination revealed that the pure effect of reservoir distance explained a small but significant (6%; F = 4.90, P = 0.002) amount of variability in fish assemblage structure in upstream reaches. Moreover, reservoir species catch per unit of effort (CPUE) significantly declined with distance from a reservoir, but only in fourth‐ and fifth‐ order streams (r2 = 0.32, P < 0.001 and r2 = 0.49, P < 0.001, respectively). Finally, a multivariate regression model including measures of stream size, catchment area, river basin, and reservoir distance successfully predicted CPUE of reservoir species at sites upstream of Kansas reservoirs (R2 = 0.45, P < 0.001). Overall, we found significant upstream effects of reservoirs on Kansas stream fish assemblages, which over time has led to a general homogenization of fish assemblages because of species introductions and extirpations. However, characteristic reservoir species are present throughout these systems and the importance of spatial proximity to reservoirs is probably dependent on the availability of suitable habitat (e.g. deep pools) in these tributary streams. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Hydrological regime, physical habitat structure and water chemistry are interacting drivers of fish assemblage structure in floodplain rivers throughout the world. In rivers with altered flow regimes, understanding fish assemblage responses to flow and physico‐chemical conditions is important in setting priorities for environmental flow allocations and other river management strategies. To this end we examined fish assemblage patterns across a simple gradient of flow regulation in the upper Murray–Darling Basin, Australia. We found clear separation of three fish assemblage groups that were spatially differentiated in November 2002, at the end of the winter dry season. Fish assemblage patterns were concordant with differences in water chemistry, but not with the geomorphological attributes of channel and floodplain waterholes. After the summer‐flow period, when all in‐channel river sites received flow, some floodplain sites were lost to drying and one increased in volume, fish assemblages were less clearly differentiated. The fish assemblages of river sites did not increase in richness or abundance in response to channel flow and the associated potential for increased fish recruitment and movement associated with flow connectivity. Instead, the more regulated river's fish assemblages appeared to be under stress, most likely from historical flow regulation. These findings have clear implications for the management of hydrological regimes and the provision of environmental flows in regulated rivers of the upper Murray–Darling Basin. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The Penobscot River drains the largest watershed in Maine and once provided spawning and rearing habitats to 11 species of diadromous fishes. The construction of dams blocked migrations of these fishes and likely changed the structure and function of fish assemblages throughout the river. The proposed removal of two main‐stem dams, improved upstream fish passage at a third dam, and construction of a fish bypass on a dam obstructing a major tributary is anticipated to increase passage of and improve habitat connectivity for both diadromous and resident fishes. We captured 61 837 fish of 35 species in the Penobscot River and major tributaries, through 114 km of boat electrofishing. Patterns of fish assemblage structure did not change considerably during our sampling; relatively few species contributed to seasonal and annual variability within the main‐stem river, including smallmouth bass Micropterus dolomieu, white sucker Catostomus commersonii, pumpkinseed Lepomis gibbosus, and golden shiner Notemigonus crysoleucas. However, distinct fish assemblages were present among river sections bounded by dams. Many diadromous species were restricted to tidal waters downriver of the Veazie Dam; Fundulus species were also abundant within the tidal river section. Smallmouth bass and pumpkinseed were most prevalent within the Veazie Dam impoundment and the free‐flowing river section immediately upriver, suggesting the importance of both types of habitat that supports multiple life stages of these species. Further upriver, brown bullhead Ameiurus nebulosus, yellow perch Perca flavescens, chain pickerel Esox niger, and cyprinid species were more prevalent than within any other river section. Our findings describe baseline spatial patterns of fish assemblages in the Penobscot River in relation to dams with which to compare assessments after dam removal occurs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The building of adduction channels (penstocks) that conduct water from reservoirs to turbines, which are located kilometres from the dam, is becoming common, optimizing the electricity generation in small dams. This design creates a river stretch with reduced discharge between the dam and the powerhouse. This study evaluates the short‐term impacts of the below‐dam decrease in river flow on fish assemblages. Samples were collected in the reduced flow stretch of the Castro Alves Hydropower Plant (Antas River, Rio Grande do Sul, Brazil) before the reservoir started operating (January 2008; mean discharge of 103.7 m3/s) and immediately after operation began (March 2008; mean discharge of 12.4 m3/s). Sampling was conducted in distinct habitats of the reduced flow stretch (slow waters—gillnets, sand beaches—seining nets, structured littoral—electrofishing, and fast waters—cast nets) with a strongly standardized effort. The attributes of the fish assemblages were not negatively affected by the flow reduction in any habitat sampled. However, distinct changes in the spatial structure were observed considering the different types of habitat predominantly used by the species, which represents an entire reorganization of the fish assemblages in the short term. It is fundamental that these short‐term aspects be considered in the licensing of hydropower plants in addition to the long‐term changes.  相似文献   

6.
In the context of river alteration, ecologists are asked to develop tools for the assessment of river integrity. Fish are known to be good bioindicators of the ecological condition of rivers. The Loire basin (France) is often considered as relatively little impacted compared to most other large European systems. But curiously, no study clearly addressed the question of fish assemblages patterns in this system in order to assess this status. Thus, we studied fish assemblages along the river network in the Loire basin using self‐organizing maps (SOMs) and we built a fish typology. Four basic assemblages were described and indicator species were identified. These assemblages varied in terms of individual species patterns as well as in terms of flow preference guilds and species richness. A discriminant analysis carried out on environmental variables revealed that they could be mainly determined by the slope, temperature and depth. Finally, fish assemblages were arrayed along a longitudinal gradient and roughly fitted the theoretical zonation expected in European rivers with the succession of brown trout (Salmo trutta fario), grayling (Thymallus thymallus), barbel (Barbus barbus) and bream (Abramis brama) zones in a downstream direction. Such patterns are still rarely observed in large European systems. However, the fish assemblage characteristic of the bream zone occurred more frequently than predicted on the basis of environmental variables. Such deviations between field data and theory suggest lotic‐to‐lentic shifts probably due to anthropogenic disturbances, especially in the grayling and barbel zones. In these river sectors, eurytopic and limnophilic species tend to replace rheophilic ones. Finally, the method used in this study to investigate fish patterns may be helpful to detect disturbances and may serve as a tool for the establishment of management plans. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Fish assemblage patterns were studied in the lower river reach of the Uthokawiphatprasit anti‐salt dam, 6 km upstream from the Pak Panang River mouth, Southern Thailand, where the dam was opened occasionally depending on the upstream water level. Matrix data of the presence–absence of 71 fish species in 102 surveys was used in the analysis by applying a self‐organizing map (SOM) model. The trained SOM (lattice 8 × 7) showed that after 6 years of operation, five assemblage patterns were distinguished. These patterns described the probability of the occurrence of fish in each fish environmental guild, which according to changes in flow and water geomorphology. Clusters Ia and Ib were mostly the surveys in upstream stations and occupied by fish in potamonic guilds, whereas the fish in the estuarine guild and marine guilds showed a high probability of occurring in clusters IIa, IIb and IIc, which belonged to the surveys in downstream stations. The surveys of the stations near the dam (i.e. stations 5 and 6) during the opening phase were contained in cluster IIb. The Kruskal–Wallis test showed that there was no statistical difference in the probability of occurrence among assemblages of the diadromous, catadromous and semi‐anadromous fishes but not the amphidromous fishes, which had a low probability of occurrence in clusters Ia and Ib. The fish assemblages were arrayed along a longitudinal gradient, where salinity and pH were the most important controlling variables and explained 94.0% of the total inertia. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Longitudinal gradients of fish assemblage and habitat structure were investigated in the Kootenai River of northern Idaho. A total of 43 500‐m river reaches was sampled repeatedly with several techniques (boat‐mounted electrofishing, hoop nets and benthic trawls) in the summers of 2012 and 2013. Differences in habitat and fish assemblage structure were apparent along the longitudinal gradient of the Kootenai River. Habitat characteristics (e.g. depth, substrate composition and water velocity) were related to fish assemblage structure in three different geomorphic river sections. Upper river sections were characterized by native salmonids (e.g. mountain whitefish Prosopium williamsoni), whereas native cyprinids (peamouth Mylocheilus caurinus, northern pikeminnow Ptychocheilus oregonensis) and non‐native fishes (pumpkinseed Lepomis gibbosus, yellow perch Perca flavescens) were common in the downstream section. Overall, a general pattern of species addition from upstream to downstream sections was discovered and is likely related to increased habitat complexity and additions of non‐native species in downstream sections. Assemblage structure of the upper sections were similar, but were both dissimilar to the lower section of the Kootenai River. Species‐specific hurdle regressions indicated the relationships among habitat characteristics and the predicted probability of occurrence and relative abundance varied by species. Understanding fish assemblage structure in relation to habitat could improve conservation efforts of rare fishes and improve management of coldwater river systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
While much is known about the fish assemblages, habitats, and ecology of rivers and reservoirs, there has been limited study of the fish assemblages in transitional habitats between these lotic and lentic habitats. Data about these river–reservoir interface (RRI) fish assemblages are needed to guide integrated management efforts of river–reservoir ecosystems. The aim of these efforts is to recommend flows for natural river function, conserve native riverine fish assemblages, and maintain reservoir sport fisheries. We used a multigear approach to assess the fish assemblages of four RRIs in the Colorado River Basin, Texas. In addition to characterizing RRI fish assemblages using species richness and evenness metrics, and habitat‐use guilds, we used a multivariate approach to evaluate intra‐annual shifts in species composition and abundance. All RRIs had high species richness and evenness values and included both macrohabitat generalist and fluvial species. RRIs also contained high proportions of the fish species available within each river–reservoir ecosystem, ranging from 55% to 80%. Observed intra‐annual shifts in RRI fish assemblages resulted from changes in abundance of dominant species rather than changes in species composition, with abundance of most species increasing from early spring to summer. Fish species responsible for intra‐annual shifts included mostly floodplain and migratory species, suggesting that species both used littoral habitats within RRIs and migrated through RRIs to river and reservoir habitats. The diversity of fishes found within RRIs highlights the importance of including these areas in future conservation and management efforts of river–reservoir ecosystems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The occurrence of aquatic plants was analysed in a medium‐sized river in Greece. There were three objectives. The first was to examine the macrophyte assemblage structure along the river. The identification and hierarchical structure of aquatic plant assemblages were analyzed using Bray–Curtis analysis. Taxa primarily responsible for the differences among the assemblages were identified using similarity percentage analysis. The second objective was to investigate whether habitat features have greater impact on aquatic plant assemblages than chemical parameters. Partial canonical correspondence analysis was used for partitioning the total variation of the biological response. The third objective was to further explore the relationships between hydrophytes (water‐supported plants) richness and water quality using linear regression model. The results showed that from the 86 macrophyte taxa recorded, the 25 were found to be primarily responsible for the differences among the macrophytic assemblages. Both geomorphological and physicochemical variables proved to be significant in the Monte Carlo permutation test. The 14 out of 19 geomorphological variables were statistically significant (p<0.004) and included in the final canonical correspondence analysis model. From physicochemical variables, temperature, conductivity and water velocity were significant predictors of species distribution. Total macrophyte variation was divided into portions: (i) explained exclusively by geomorphological variables (34%); (ii) explained exclusively by physicochemical variables (3%); (iii) explained by both variables (52%); and (iv) unexplained (4%). Partitioning clearly revealed that macrophyte assemblage structure was strongly associated with geomorphological features. Τhe results indicated that hardness, DO and chl‐a play a more prominent role in hydrophyte species richness at community level. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Efforts to conserve stream and river biota could benefit from tools that allow managers to evaluate landscape‐scale changes in species distributions in response to water management decisions. We present a framework and methods for integrating hydrology, geographic context and metapopulation processes to simulate effects of changes in streamflow on fish occupancy dynamics across a landscape of interconnected stream segments. We illustrate this approach using a 482 km2 catchment in the southeastern US supporting 50 or more stream fish species. A spatially distributed, deterministic and physically based hydrologic model is used to simulate daily streamflow for sub‐basins composing the catchment. We use geographic data to characterize stream segments with respect to channel size, confinement, position and connectedness within the stream network. Simulated streamflow dynamics are then applied to model fish metapopulation dynamics in stream segments, using hypothesized effects of streamflow magnitude and variability on population processes, conditioned by channel characteristics. The resulting time series simulate spatially explicit, annual changes in species occurrences or assemblage metrics (e.g. species richness) across the catchment as outcomes of management scenarios. Sensitivity analyses using alternative, plausible links between streamflow components and metapopulation processes, or allowing for alternative modes of fish dispersal, demonstrate large effects of ecological uncertainty on model outcomes and highlight needed research and monitoring. Nonetheless, with uncertainties explicitly acknowledged, dynamic, landscape‐scale simulations may prove useful for quantitatively comparing river management alternatives with respect to species conservation. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

12.
Long‐term monitoring of the food web of a regulated hydropeaking river was conducted to assess if previously documented effects of changing ramping rates (RRs) were maintained with the addition of 6 years of data. Using carbon and nitrogen stable isotope analyses, we hypothesized that: (1) macroinvertebrates and fish inhabiting areas below peaking hydrodams would be higher in δ15N and lower in δ13C due to increased flow velocity and the influence of light respired dissolved inorganic carbon, relative to those sampled from areas with a natural flow regime; (2) the increase in δ15N of macroinvertebrates would lead a shorter food web length in the regulated river, but δ13C and niche width would be similar between the restricted and unrestricted RR periods (i.e., the BACI analysis); and (3) isotopic metrics (e.g., δ13C, δ15N, niche width [SEAB], and food chain length [Δ15N]) would correlate with variations in flow characteristics through time. Consistent with previous analysis conducted over a shorter time period, a shift toward higher δ15N values was observed for both fish and invertebrates, but, contrarily, only invertebrates (not fish) had a lower δ13C value downstream of the dam. Over the long term, the before‐after‐control‐impact analysis found no effect of RRs on any of the food web metrics, implying that the change in operation did not affect the river food web. However, analysis of the time series data indicated that flow metrics and trophic metrics were often correlated, including a negative effect of RR (invertebrates) and discharge (fish) on food chain length. This study illustrates the difficulty in detecting changes in food web structure and function under changing flow regime influenced by natural and anthropogenic effects. As such, this study highlights the need for considering large spatial and temporal scales to differentiate between confounding effects of climate, natural variability, and altered flow regimes on food webs in regulated rivers.  相似文献   

13.
Most rivers and streams in the city of Oslo, Norway, rise in the surrounding forests, and all run through industrial and urban areas before they reach the sea. Most of these rivers have a long history of poor water quality in the middle and lower reaches until the early 1980s. This was reflected in low benthic diversity and the absence of fish. However, at the end of the 1970s, considerable efforts were made to limit industrial discharges, pollution episodes, and urban runoff, resulting in a substantial improvement in water quality. This improvement in water quality resulted in major changes in the benthos and fish populations of the rivers, especially the river Akerselva, which runs through the city centre. Here Atlantic salmon (Salmo salar) became extinct in the mid‐1800s and did not return until 1983. Atlantic salmon and sea trout (Salmo trutta) now spawn in the lower reaches, and the river supports juvenile populations of these salmonids. In line with the improvement in water quality, benthic biodiversity has also increased. These improvements have been documented based on long‐term monitoring of benthos and fish. Increased benthic diversity and presence of fish also enabled the authorities to trace the source of several pollution episodes that led to fish kills. The European Union Water Framework Directive will bring further pressure to maintain a stable and good ecological status for the Oslo rivers, although it may be difficult to attain this goal in an urban environment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Water and natural resource managers are concerned with evaluating how fish habitat and populations may respond to water diversions and small‐scale flow augmentations. We used two‐dimensional hydraulic models, habitat suitability curves and an individual‐based population viability model to assess whether flow augmentations of about 0.28–0.57 m3/s would create suitable habitat for federally listed native fish loach minnow Rhinichthys cobitis and spikedace Meda fulgida in a reach of the Gila River, New Mexico, and then examined how fish population viability may change under a variety of colonization and extinction scenarios. These simulations help to inform water management decisions in a reach of the Gila River where river diversions currently exist and new diversions and augmentations are being proposed. Our results suggest that the flow augmentations evaluated will result in small changes (on average across life stages, ?0.22% to 4.06%) in suitable habitat for loach minnow and spikedace depending on augmentation scenario and fish life stage. While these percent changes are small, they would result in a reduction in the dewatering of the river channel in a river reach where native fish abundance is thought to be low. Actual native fish responses to these habitat changes are unknown; however, these flow augmentations could potentially allow these native species to re‐colonize this river segment from upstream or downstream sources increasing species distribution and likely population viability. Maintaining viable populations of native fish in this river reach is dependent on complex factors including persistence of suitable habitat for multiple life stages, connectivity with other populations and minimizing risk of invasion from non‐native species. We recommend that these predictions from the habitat and population models be tested and verified in an adaptive management framework linking modelling, experimental management, monitoring and reassessment to inform water management decisions in the Gila River. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
River reaches are often subject to multiple co‐occurring anthropogenic stressors. Disentangling the relative impacts of different stressors is important in developing river management strategies. Bio‐assessments using taxonomically based metrics (e.g. taxa richness and diversity) are frequently used as a means of determining the impact of stressors on river reach quality. Although this method has been successful in determining river reach quality, taxonomically based metrics are often limited in their ability to distinguish mechanisms of impact and thus the importance of different stressors. In contrast, biological traits can provide a mechanistic understanding of anthropogenic stressor impacts and therefore have the potential to identify the importance of different co‐occurring stressors. Using both taxonomically based metrics and biological traits, we examined the impact of two common co‐occurring stressors, summer water withdrawal and channelization, on the macroinvertebrate assemblage of a Columbia River tributary Both metrics and traits showed a strong shift at the point where intense channelization began. However, the metrics failed to distinguish whether channelization or co‐occurring water withdrawal was the driver of change. In contrast, biological traits indicated that the assemblage within the heavily channelized area shifted to one dominated by resilience traits often found in river reaches subject to scouring flows. This result indicates that scouring flows associated with intense channelization are the primary driver of change in the macroinvertebrate assemblage and that water withdrawals had little observable impact. Our results demonstrate the utility of biological traits for disentangling the impact of multiple stressors in river systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
A habitat‐based aquatic macroinvertebrate study was initiated in the Lower Missouri River to evaluate relative quality and biological condition of dike pool habitats. Water‐quality and sediment‐quality parameters and macroinvertebrate assemblage structure were measured from depositional substrates at 18 sites. Sediment porewater was analysed for ammonia, sulphide, pH and oxidation–reduction potential. Whole sediments were analysed for particle‐size distribution, organic carbon and contaminants. Field water‐quality parameters were measured at subsurface and at the sediment–water interface. Pool area adjacent and downstream from each dike was estimated from aerial photography. Macroinvertebrate biotic condition scores were determined by integrating the following indicator response metrics: % of Ephemeroptera (mayflies), % of Oligochaeta worms, Shannon Diversity Index and total taxa richness. Regression models were developed for predicting macroinvertebrate scores based on individual water‐quality and sediment‐quality variables and a water/sediment‐quality score that integrated all variables. Macroinvertebrate scores generated significant determination coefficients with dike pool area (R2 = 0.56), oxidation–reduction potential (R2 = 0.81) and water/sediment‐quality score (R2 = 0.71). Dissolved oxygen saturation, oxidation–reduction potential and total ammonia in sediment porewater were most important in explaining variation in macroinvertebrate scores. The best two‐variable regression models included dike pool size + the water/sediment‐quality score (R2 = 0.84) and dike pool size + oxidation–reduction potential (R2 = 0.93). Results indicate that dike pool size and chemistry of sediments and overlying water can be used to evaluate dike pool quality and identify environmental conditions necessary for optimizing diversity and productivity of important aquatic macroinvertebrates. A combination of these variables could be utilized for measuring the success of habitat enhancement activities currently being implemented in this system. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

17.
Navigation‐induced physical forces have been suggested to modify the structure of riverine fish assemblages by impeding especially the recruitment of littoral bound species. To investigate the effect of vessel frequency on fish, we compared the composition and seasonal succession of young‐of‐the‐year (YOY) fish assemblages in three similarly degraded river reaches differing in average vessel passages (2, 6 and 41 per day). Fish were caught by electrofishing biweekly between May and September. Multivariate tests were used to analyse differences between YOY‐fish assemblages and hurdle regression models applied to determine abiotic factors predicting fish occurrence and abundance. Roach (Rutilus rutilus) and perch (Perca fluviatilis) densities were compared. Roach larvae remain in the littoral zone while perch larvae shift to the pelagic zone immediately after hatch. YOY‐fish assemblage structure substantially changed along the traffic intensity gradient. In the high traffic intensity reach, species number and total fish density were markedly reduced compared to the other reaches. Roach densities were lowest in the high traffic intensity reach whereas perch densities did not decline along the gradient. Hurdle regressions confirmed a stronger effect of commercial navigation traffic intensity on roach than on perch. The total zooplankton biomass was highest in the high traffic intensity reach. Our results provide empirical evidence that intensive commercial navigation impoverishes fish assemblages in width‐restricted waterways. They underlined that in particular those species that have their first nursery habitats in shoreline areas were more affected by intensive commercial navigation than species whose larvae live predominantly pelagic. The results indicate that the negative effect of intensive navigation on riverine fish results primarily from the navigation‐induced hydraulic disturbances along the banks. Therefore, mitigation of navigation‐induced hydraulic forces is required to prevent degradation of fish communities in waterways. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Regional assessment of cumulative impacts of dams on riverine fish assemblages provides resource managers essential information for dam operation, potential dam removal, river health assessment and overall ecosystem management. Such an assessment is challenging because characteristics of fish assemblages are not only affected by dams, but also influenced by natural variation and human‐induced modification (in addition to dams) in thermal and flow regimes, physicochemical habitats and biological assemblages. This study evaluated the impacts of dams on river fish assemblages in the non‐impoundment sections of rivers in the states of Michigan and Wisconsin using multiple fish assemblage indicators and multiple approaches to distinguish the influences of dams from those of other natural and human‐induced factors. We found that environmental factors that influence fish assemblages in addition to dams should be incorporated when evaluating regional effects of dams on fish assemblages. Without considering such co‐influential factors, the evaluation is inadequate and potentially misleading. The role of dams alone in determining fish assemblages at a regional spatial scale is relatively small (explained less than 20% of variance) compared with the other environmental factors, such as river size, flow and thermal regimes and land uses jointly. However, our results do demonstrate that downstream and upstream dams can substantially modify fish assemblages in the non‐impoundment sections of rivers. After excluding river size and land‐use influences, our results clearly demonstrate that dams have significant impacts on fish biotic‐integrity and habitat‐and‐social‐preference indicators. The influences of the upstream dams, downstream dams, distance to dams, and dam density differ among the fish indicators, which have different implications for maintaining river biotic integrity, protecting biodiversity and managing fisheries. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
We applied species sensitivity distributions (SSDs), commonly used in chemical risk assessment, to quantify the impact of water‐flow velocity on the presence of fish species in a river. SSDs for water‐flow velocity were derived from observational field data (maximal velocity at which species occur, Vmax) and laboratory measurements (critical swimming velocity, Vcrit). By calculating the potentially affected fraction of the fish species of the river Rhine, effects of water‐flow velocity on different life stages and guilds were estimated. Vmax values for adults were significantly higher than those for juveniles and larvae. At water‐flow velocity of 60 cm s−1, half of the adults were affected, while half of the non‐adult life stages were affected at velocities of 25 to 29 cm s−1. There was a positive correlation between body size and fish tolerance to water‐flow. As expected, rheophilic species tolerated higher water‐flow velocities than eurytopic and limnophilic species. Maximal velocities measured in littoral zones of the Rhine were, on average, 10 cm s−1, corresponding to an affected fraction of 2%. An increase in water‐flow velocity up to 120 cm s−1 as a result of passing vessels caused an increase in affected species to 75%. For a successful ecological river management, the SSD method can be used to quantify the trait‐mediated effects of water‐flow alterations on occurring species enabling to compare and rank the effects of chemical and physical stress. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Defining appropriate environmental flow regimes and criteria for the use of environmental water allocations requires experimental data on the ecological impacts of flow regime change and responses to environmental water allocation. Fish assemblages in one regulated and one unregulated tributary paired in each of two sub‐catchments of the Hunter River, coastal New South Wales, Australia, were sampled monthly between August 2006 and June 2007. It was predicted that altered flow regime due to flow regulation would reduce species richness and abundance of native fish, and assemblage composition would differ between paired regulated and unregulated tributaries. Despite significant changes in richness, abundance and assemblage composition through time, differences between regulated and unregulated tributaries were not consistent. In February 2007, an environmental flow release (‘artificial flood’) of 1400 ML was experimentally released down the regulated tributary of one of the two catchments over 6 days. The flow release resulted in no significant changes in fish species abundances or assemblage composition when compared to nearby unregulated and regulated tributaries. Flow regulation in this region has reduced flow variability and eliminated natural low‐flow periods, although large floods occurred at similar frequencies between regulated–unregulated tributaries prior to and during 2006–2007, resulting in only moderate changes to regulated flow regimes. Barriers to dispersal within catchments also compound the effects of flow regulation, and findings from this study indicate that the location of migratory barriers potentially confounded detection of the effects of flow regime change. Further experimental comparisons of fish assemblages in regulated rivers will refine river‐specific response thresholds to flow regime change and facilitate the sustainable use of water in coastal rivers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号