首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The San Pedro River in the southwestern United States retains a natural flood regime and has several reaches with perennial stream flow and shallow ground water. However, much of the river flows intermittently. Urbanization‐linked declines in regional ground‐water levels have raised concerns over the future status of the riverine ecosystem in some parts of the river, while restoration‐linked decreases in agricultural ground‐water pumping are expected to increase stream flows in other parts. This study describes the response of the streamside herbaceous vegetation to changes in stream flow permanence. During the early summer dry season, streamside herbaceous cover and species richness declined continuously across spatial gradients of flow permanence, and composition shifted from hydric to mesic species at sites with more intermittent flow. Hydrologic threshold values were evident for one plant functional group: Schoenoplectus acutus, Juncus torreyi, and other hydric riparian plants declined sharply in cover with loss of perennial stream flow. In contrast, cover of mesic riparian perennials (including Cynodon dactylon, an introduced species) increased at sites with intermittent flow. Patterns of hydric and mesic riparian annuals varied by season: in the early summer dry season their cover declined continuously as flow became more intermittent, while in the late summer wet season their cover increased as the flow became more intermittent. Periodic drought at the intermittent sites may increase opportunities for establishment of these annuals during the monsoonal flood season. During the late summer flood season, stream flow was present at most sites, and fewer vegetation traits were correlated with flow permanence; cover and richness were correlated with other environmental factors including site elevation and substrate nitrate level and particle size. Although perennial‐flow and intermittent‐flow sites support different streamside plant communities, all of the plant functional groups are abundant at perennial‐flow sites when viewing the ecosystem at broader spatial and temporal scales: mesic riparian perennials are common in the floodplain zone adjacent to the river channel and late‐summer hydric and mesic annuals are periodically abundant after large floods. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Models that link ecological responses to hydrologic changes are important for assessing the effects of flow regulation on aquatic and riparian ecosystems. Based on the Recruitment Box Model, a graphical model used to prescribe environmental flows for cottonwood (Populus spp.) recruitment, we designed a simulation model to represent the influence of river flow dynamics on seedling recruitment of riparian pioneer woody plants. The model simulates the influence of temporal patterns of river stage on dispersal, germination, initial recruitment and over‐winter survival of first‐year seedlings of riparian pioneer shrubs and trees. We used the model to simulate seedling recruitment patterns for five species (Acer saccharinum, Betula nigra, Populus deltoides, Salix nigra and Salix exigua) on the Wisconsin River (Wisconsin, USA) under three flow scenarios: historic (1935–2002), simulated natural (1915–1975) and simulated regulated flows (1915–1975). Simulation results agreed well with field‐observed relative differences among years (1997–2000) in seedling densities for the five focal species. Simulated successful recruitment years were highly synchronous among species, but species differed in their sensitivity to flows at different times during the growing season, consistent with among‐species differences in seed dispersal timing. Comparison of simulated natural and regulated flows for 1915–1975 showed that flow regulation decreased monthly flow variability, increased late summer to winter baseflow and reduced the magnitude of spring peaks. Simulated recruitment and over‐winter survival of tree seedlings of all species was enhanced under the regulated flow scenario, likely due to increased summer baseflow and reductions in peak flood magnitude. Our analyses show the utility of extending the Recruitment Box Model to include multiple species of riparian shrubs and trees, and the effects of post‐colonization flows on their recruitment success. However, some key functional relationships between flow patterns and woody seedling demography (e.g. shear stress thresholds for seedling mortality) have not been adequately quantified and merit further study. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Gravel augmentation is used in sediment‐starved streams to improve salmonid spawning habitat. As gravel is added to river channels, water surface elevations may rise in adjacent areas, activating floodplain habitat at lower flows, and floodplains inundate more frequently, potentially affecting the quantity and quality of juvenile salmonid rearing habitat. We analysed 5 years of juvenile Chinook salmon Oncorhynchus tschawytscha and steelhead Oncorhynchus mykiss data from snorkel surveys before and after gravel augmentation in the Lower American River, a low‐gradient, highly regulated alluvial river in California's Central Valley. We measured the quality and quantity of rearing habitat (current velocity and areal extent of inundated riparian vegetation) following gravel placement and tested whether these factors affected juvenile abundance. Gravel augmentation increased floodplain extent by 3.7–19.8%, decreased average flow velocity from 1.6 to 0.3 m s?1 and increased the amount of vegetative cover from 0.3% to 22.6%. Juvenile abundances increased significantly for both species following augmentation. However, the strength of the relationship between abundance and habitat variables was greater for smaller salmonids. These results suggest that, in addition to enhancing salmonid spawning habitat, gravel augmentation can improve rearing habitat where channel incision and/or regulated hydrographs disconnect floodplains from main river channels. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Following water withdrawal, riparian cottonwoods have declined downstream from some dams in western North America. Analyses of aerial photographs and field observations in the 1980s suggested that the black and narrowleaf cottonwoods (Populus trichocarpa and Populus angustifolia) along the Waterton River, Alberta, were declining due to drought stress following the 1964 damming and diversion. This raised concern for the riverine ecosystems and in 1991, “functional flows” commenced with 2 changes: (a) the minimum flow was increased from 0.9 to 2.3 m3/s (mean discharge 21.9 m3/s) and (b) flow ramping provided gradual stage recession after the spring peak. This provided an environmental flow regime that was delivered for 2 decades and this study investigated the consequent river flow patterns and riparian woodlands upstream and downstream from the Waterton Dam. Analyses of aerial photographs from 1951 to 2009 assessed 4 flow management intervals: (a) the free‐flowing predam condition, (b) the initial dammed interval to the mid‐1970s, (c) a drought interval in the 1980s, and (d) with the environmental flow regime after 1991. Analyses revealed woodland reduction from 1961 to 1985 due to losses through bank erosion with major floods and apparent decline due to low flows following a regional drought and water withdrawal for irrigation. With the subsequent environmental flow regime, there was apparent woodland recovery, despite drought in 2000 and 2001. This study demonstrated that the correspondence between river flow patterns and the extent of riparian woodlands and the benefit from the environmental flow regime that probably reduced drought stress and mortality.  相似文献   

5.
The natural flow regime and the relationship between flows and riparian vegetation are described for sites on both the Blackwood River in south‐western Australia and the Ord River in north‐western Australia. Analysis of long‐term flow data showed the historic mean monthly river discharge for the Blackwood River is strongly seasonal and highly predictable with generally low variability each month. The Ord River showed a strong seasonality of flows with about 92% of the (total) yearly flow occurring between December and March. Flow variability was very high (e.g. coefficient of variation >100% for all months) but highly predictable, with this mostly attributed to low but constant dry‐season flows. Water depth, duration of flood events and the number of flood events per year show a significant correlation with aspects of the riparian vegetation within experimental vegetation plots. Results highlight the strong relationship between floristics, life form structure and population dynamics with stream hydrology. On the Blackwood River, species richness and cover of shrubs reduced with increased duration and frequency of flooding, while cover of exotic species and annual herbs increased with increased flooding. Germination of tree seedlings was not influenced by flood regime but size class of tree species increased with flooding frequency. On the Ord River, species richness was not influenced by flooding regime. However, cover of perennial grasses increased with flooding frequency whilst cover of shrubs decreased. There was no relationship between flooding and seedling establishment whilst tree size class decreased with increased flooding. The methods described here can be used to compare the response of different components of the riparian vegetation to different fluvial regimes (e.g. because of impoundment and abstraction). This technique can be expanded for the management of riparian zones and planning rehabilitation programmes. It may also be useful for improving the ecological knowledge base for setting environmental flows in regulated systems. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
The importance of flow variability and floodplain water table recharge for the establishment and long‐term survival of riparian vegetation has been well‐documented. However, temporal and spatial variation in floodplain aquifers has received less attention, although native species can have narrow tolerances for groundwater decline. Our observations of decreased cottonwood cover on floodplains and increased willow cover on river banks since dam completion on the Dolores River led to comparisons between three long‐term study sites above and below McPhee Dam. We summarize 5 years (2010–2014) of shallow groundwater well data from transects of three wells per site. Vegetation cover data were collected from quadrats and line‐intercept transects. In the willow zone, groundwater well levels mirror in‐channel flows and rarely drop below 0.6 m from ground surface. Willow cover and stem counts on point bars are higher at dammed sites. Wells in the cottonwood zone indicate that alluvial recharge happens only during prolonged peak discharge during spring snowmelt or dam release. Years with no dam spill reduced connectivity between surface flows and groundwater, and groundwater depth dropped to between 2 and >2.5 m. Long‐term data below the dam indicate that canopy cover of the dominant cottonwoods has declined over time (48% in 1995, 19% in 2003), especially in the wake of severe drought. Mature cottonwood cover is significantly higher at the undammed site (p = 0.025). Our results indicate that floodplain habitats below dams exist under artificially extreme drought and inform how biologically diverse riparian systems will be impacted by a drying climate. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The effects of river damming on geomorphic processes and riparian vegetation were evaluated through field studies along the regulated Green River and the free‐flowing Yampa River in northwestern Colorado, USA. GIS analysis of historical photographs, hydrologic and sediment records, and measurement of channel planform indicate that fluvial processes and riparian vegetation of the two meandering stream reaches examined were similar prior to regulation which began in 1962. Riparian plant species composition and canopy coverage were measured during 1994 in 36, 0.01 ha plots along each the Green River in Browns Park and the Yampa River in Deerlodge Park. Detrended correspondence analysis (DCA) of the vegetation data indicates distinctive vegetation differences between Browns Park and Deerlodge Park. Canonical correspondence analysis (CCA) indicates that plant community composition is controlled largely by fluvial processes at Deerlodge Park, but that soil chemical rather than flow related factors play a more important role in structuring plant communities in Browns Park. Vegetation patterns reflect a dichotomy in moisture conditions across the floodplain on the Green River in Browns Park: marshes with anaerobic soils supporting wetland species (Salix exigua, Eleocharis palustris, Schoenoplectus pungens, and Juncus nodosus) and terraces having xeric soil conditions and supporting communities dominated by desert species (Seriphidium tridentatum, Sarcobatus vermiculatus, and Sporobolus airoides). In contrast, vegetation along the Yampa River is characterized by a continuum of species distributed along a gradual environmental gradient from the active channel (ruderal species such as Xanthium struminarium and early successional species such as S. exigua, Populus deltoides subsp. wislizenii, and Tamarix ramossissima) to high floodplain surfaces characterized by Populus forests and meadow communities. GIS analyses indicate that the channel form at Browns Park has undergone a complex series of morphologic changes since regulation began, while the channel at Deerlodge Park has remained in a state of relative quasi‐equilibrium with discharge and sediment regimes. The Green River has undergone three stages of channel change which have involved the transformation of the historically deep, meandering Green River to a shallow, braided channel over the 37 years since construction of Flaming Gorge Dam. The probable long‐term effects of channel and hydrologic changes at Browns Park include the eventual replacement of Populus‐dominated riparian forest by drought tolerant desert shrublands, and the enlargement of in‐channel fluvial marshes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
Water rights for environmental flows are not universal, and oftentimes, legal tools used to incorporate the environment into water management only require new users to consider their impact. It can be difficult to include the needs of riparian and aquatic ecosystems in new plans when relevant information is not always available, especially when other existing uses already outstrip available supplies. There is a need for easily accessible and understandable science on the water requirements for riparian and aquatic species, so managers can make informed decisions about whether or not to include riparian and aquatic species in their community's water management future. In this paper, we describe the current understanding of the link between hydrology and Arizona's riparian and aquatic ecosystems through the creation of a geospatial Environmental Water Demands database that can be used to determine the water needs to maintain habitat. Analysis of 121 studies reveals that there are very few analyses of the surface water and groundwater requirements for intermittent or ephemeral river systems, and there are only limited generalizable data for aquatic species. Except for a few species, such as Cottonwood (Populous fremontii) and Willow (Salix gooddingii), few data are available on the flow requirements for vegetation. The Environmental Water Demands database can be used to identify critical geographic and topical knowledge gaps where further research is needed, as well as serve as a single place for water and land managers to assess and use the most currently available information to make more informed management decisions and recommendations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Riparian forest vegetation is widely believed to protect riverbanks from erosion, but few studies have quantified the effect of riparian vegetation removal on rates of river channel migration. Measured historical changes in a river channel centreline, combined with mapped changes in floodplain vegetation, provide an opportunity to test how riparian vegetation cover affects the erodibility of riverbanks. We analysed meander migration patterns from 1896 to 1997 for the central reach of the Sacramento River between Red Bluff and Colusa, using channel planform and vegetation cover data compiled from maps and aerial photography. We used a numerical model of meander migration to back‐calculate local values for bank erodibility (i.e. the susceptibility of bank materials to erosion via lateral channel migration, normalized for variations in near‐bank flow velocities due to channel curvature). A comparison of migration rates for approximately 50 years before and after the construction of Shasta dam suggests that bank migration rates and erodibility increased roughly 50%, despite significant flow regulation, as riparian floodplains were progressively converted to agriculture. A comparison of migration rates and bank erodibilities between 1949 and 1997, for reaches bordered by riparian forest versus agriculture, shows that agricultural floodplains are 80 to 150% more erodible than riparian forest floodplains. An improved understanding of the effect of floodplain vegetation on river channel migration will aid efforts to predict future patterns of meander migration for different river management and restoration scenarios. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
The composition and structure of riparian vegetation are linked to the natural hydrological variability and variation of environmental parameters in several spatial scales. The objective of this study is to determine the relationship between the spatial distribution of the woody riparian vegetation and the variation in the riverbank topographic gradient, verifying whether this variation was significant between species and/or growth categories. Specifically, our research examined the location of the woody species with respect to the thalweg along two reaches of the Jarama River in Central Spain. The positioning variables of each individual and distance and elevation above the thalweg were evaluated for four growth categories using statistical analysis. This study revealed that the positioning of the species along reaches is not random and differs with the species and growth categories. In addition, groups of species were specified in the different growth categories using similar positioning patterns with respect to the thalweg. Examples of similar groups of species in a specifically growth category were as follows: Alnus glutinosa–Salix alba–Salix fragilis for one reach and Alnus glutinosa–Populus nigra–Salix alba–Salix salviifolia for the other one. Topographical preference ranges of the riparian species and groups of the Jarama River were also obtained. The integration of data relative to the distribution of species along the topographic gradient can be very useful in identifying species with a preference for specific locations and can also contribute to the success of the measures adopted to restore these frequently highly degraded environments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Riparian or streamside woodlands include obligate riparian trees and shrubs (obligates) that are restricted to streamside zones, and facultative riparian species that are abundant in, but not restricted to the riparian areas. Due to their distinctive life history requirements, it may be predicted that the ecological specialist obligates would be more vulnerable than the facultative generalists to impacts from river damming and flow regulation. We tested this along the Snake River through Hells Canyon, USA, where two native riparian shrubs dominate: the obligate sandbar willow (Salix exigua), and the facultative, netleaf hackberry (Celtis reticulata). We assessed riparian conditions over the past century by comparing ground‐level and aerial photographs taken after 1907 and in the 1950s in advance of three dams, versus recent conditions. These comparisons revealed three changes downstream from the dams: (1) the depletion of surface sands and sandbars and (2) reductions in sandbar willow versus (3) the proliferation of hackberry in dense bands above the typical high‐water line. The willow decline probably resulted from the depletion of sand following sediment trapping by the reservoirs, combined with changes in the seasonal water flow pattern. The increase in hackberry may have resulted from a beneficial ‘irrigation effect’ of daily water releases for power generation during the summer. The opposing responses reflect the plants' differing life histories and may partially resolve impacts of river regulation on alluvial sediments versus the instream flow pattern. We consider other riparian studies that suggest that obligates such as cottonwoods (Populus angustifolia, P. deltoides and P. fremontii) are highly vulnerable to river regulation, while facultative trees and shrubs such as trembling aspen (Populus tremuloides), wolf‐willow (Elaeagnus commutata) and velvet mesquite (Prosopis velutina) are more resilient. These results suggest that conservation of riparian woodlands should emphasize the ecological specialist obligates, while facultative species may be less vulnerable to river regulation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
River regulation is associated with vegetation encroachment and invasions of some non‐native species in the semi‐arid west. Shifts in the abundance of native and non‐native woody riparian species are an interplay of regulation, life history traits and an array of flow and physical environmental variables. We sought to compare plant densities and per cent cover of several invasive species over two time periods in a paired river study, contrasting three different degrees of regulation along reaches of the Green and Yampa rivers in Colorado and Utah, USA. We censused patches of non‐native plants and recorded per cent cover in quadrats along 171 river km. The upper Green (10.1 patches ha?1) had the highest invasive plant patch density followed by the lower Green (4.4 per ha) and the Yampa (3.3 per ha). Invasive species were present in 23%, 19% and 4% of sample quadrats, and an average of 0.28, 0.22 and 0.04 invasive species detected per square metre was recorded along the upper Green, lower Green and Yampa Rivers, respectively. Most species had significantly (p ≤ 0.02) higher percent cover on the upper Green than either or both the lower Green and the Yampa River. Whereas the less regulated river reaches maintain lower densities of invasive species than the most regulated reach, long‐term persistence of this pattern is still in question as some species patches showed notable increases on the Yampa and lower Green Rivers from 2002–2005 to 2010–2011. Although invasion is enhanced by flow regulation, life history traits of some species suggest invasion is likely, regardless of flow regulation. Published 2015. This article is a U.S. Government work and is in the public domain in the USA  相似文献   

13.
Under pre‐settlement conditions the Yakima River in Washington state, USA was characterized by multiple channels, complex aquifers and extensive riparian cottonwood forests. Subsequent implementation of headwater dams to supply irrigation water has altered river and floodplain processes critical to the cottonwoods and associated riparian vegetation. In this study, we analysed hydrology and floodplain forests and especially the dominant black cottonwoods (Populus trichocarpa) along sequential reaches of the Yakima River. Elevations were surveyed and vegetation inventoried along cross‐sectional belt transects, and cottonwood tree ring interpretations investigated historic associations between river hydrology and cottonwood establishment and growth. We analysed hydrographs relative to the apparent episodes of cottonwood recruitment and applied a quantitative model for seedling colonization that required: (1) floods, disturbance flows to produce barren nursery sites, and subsequent flows for seedling (2) establishment and (3) survival. In contrast to earlier conditions, flow patterns after the 1960s have generally been unfavourable for cottonwood recruitment although some cottonwood colonization has occurred in association with physical disturbance from gravel mining. With recent flow regimes, regulated flows along upper reaches maintain the river near bank‐full throughout the growing season, thus inundating suitable seedling recruitment sites. Downstream, irrigation withdrawals reduce the river stage, resulting in seedling establishment at low elevations that are lethally scoured by subsequent high flows. These regulated flow regimes have not hindered growth of established trees, but have reduced the recruitment of cottonwoods, and particularly disfavoured females, thus altering sex ratios and producing skewed cottonwood population age and gender structures. The cottonwood decline has also been associated with other changes in riparian plant community composition, including the encroachment of invasive weeds. Based on this ecohydrologic analysis we discuss flow adjustments that could rejuvenate cottonwood forests along the Yakima River. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Riparian Salicaceae are prolific producers of short‐lived seeds that require very restrictive hydro‐geomorphic conditions for establishment. It is generally assumed that if floods are able to create nursery sites timed with seed dispersal, recruitment will occur. Other spatial and temporal seed dispersal patterns besides the dispersal period have historically received little attention. However, seed dispersal patterns can be highly variable between regions, species and over the years. In this paper, we report the seed dispersal patterns of three dominant riparian Salicaceae trees in Europe: Populus alba, P. nigra and Salix alba to suggest possible trade‐offs between seed dispersal patterns, germinability, longevity and establishment. Seed rain of the three species was monitored in 33 glue‐coated traps for three months yearly from 2006 to 2008 in an 8‐km stretch of the Middle Ebro River (N Spain), which has a pluvio‐nival regime. P. alba dispersed seeds earlier during a shorter time period and with a fewer number of seed release pulses compared with P. nigra, and especially with S. alba. With overlapping seed dispersal periods, the two latter species occupy similar landform units but rarely compete with P. alba, usually at higher elevations, as shown in a previous study in the same study area. The three species had very high germinability immediately after release (>90%), but longevity in S. alba was eight times shorter than that of its two Populus counterparts. We suggest that S. alba has compensated its lower seed quality with a more spaced seed release in several pulses of similar magnitude. With similar seed dispersal patterns and germinability but a higher longevity, P. nigra had a much higher density of individuals than S. alba in the recruitment zones of the study area. We hope that our results may inform river managers about how to optimize river flows to promote sexual regeneration of these species. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
和田河干流植被生态需水量是多少?河道渗漏水量能否满足两岸植被的生态需水?为了回答这两个事关和田河中下游河道整治必要性的基础问题,本研究定量分离河道损耗水量,探究河道渗漏水量与天然植被生态需水之间的定量响应关系,结果表明:(1)多年平均来水条件下,和田河干流河损量约为6.46×10~8m~3,其中,蒸发量与渗漏量分别为3.5×10~8和2.65×10~8m~3,各占河损量的58.88%和41.12%;(2)和田河干流天然植被的生态需水量1.37×10~8m~3,河道渗漏水量可以满足植被生态水量需求。因此,本研究认为开展河道整治,不仅不会影响干流植被生态需水,还可以减少水面蒸发,提高和田河输水能力,更有利于开展生态水量调度,保护和恢复干流天然植被。  相似文献   

16.
The potamodromous smallscale redfin minnow (Pseudobarbus asper) spawned in the riffle areas of the regulated Groot River, the major tributary of the Gamtoos River system, during controlled releases of water from Beervlei Dam. Water had been released at irregular intervals from this flood control dam solely for irrigating agricultural lands. Flushing flows removed accumulated salts from riverine pools and were followed by reduced flows which initiated spawning of the minnow species. Developing embryos of P. asper were found in the riffle zone of the main river channel during the water releases. Ripe-running males were located under the boulders in the riffles. Several developing embryos of Labeo umbratus were found with the P. asper eggs. Very little is known about the effects of man-made alterations to the river flow regime on the reproductive activity of fishes in the majority of South African river systems. The agriculturally based flooding regime at Beervlei may have increased the recruitment of the redfin minnow species. Water management must give cognizance to the biological and environmental requirements within the regulated river systems. Water release strategies from Beervlei Dam should include instream flow decisions based on the requirements of the aquatic environment as well as for agriculture.  相似文献   

17.
The expected recovery of the natural conditions of large regulated rivers over the distance downstream from a dam is limited by relative tributary size according to the Serial Discontinuity Concept; however, geomorphology may also influence the recovery process. We examined the woody vegetation of the riparian zone in seven river segments distributed along the regulated reach of the Tiétar River in central‐western Spain, which flows through two distinct geomorphic templates. Whereas the annual runoff has decreased by 30% on average along the entire studied reach following the construction of the Rosarito Dam and the initiation of field irrigation in the region, the magnitude and frequency of the peak flows decreased by 30% immediately downstream from the dam but recovered the natural values with the distance downstream. We evaluated the recovery patterns toward the natural riparian conditions by comparing woody species composition, diversity and distribution of vegetation patches established prior to and after dam completion. Our results did not indicate a recovery gradient of any of the analysed vegetation attributes downstream from the dam. Instead, we found that the difference in the slope of the stream channel and banks, the width of the valley and the size of substratum particles among the surveyed patches were factors that significantly mediated dam and tributary effects on vegetation and influenced the degree of vegetation recovery. Hence, the maintenance of the intensity of the flow alteration scheme by the numerous water withdrawals and the low tributary contributions, coupled with differential geomorphological characteristics along the reach, overwhelmed the natural tendency for the river to restore its natural conditions with distance downstream. Improving water management and, particularly, restoring endangered riparian ecosystems require a detailed understanding of existing and potential woody species behaviour across the geomorphological settings of rivers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
We investigated interactions of riparian vegetative conditions upon a suite of channel morphological variables: active channel width, variability of width within a reach, large wood frequency, mesoscale habitat distributions, mesoscale habitat diversity, median particle size and per cent fines. We surveyed 49 wadeable streams, 45 with low levels of development, throughout the Upper Little Tennessee River Basin in the Southern Appalachians. Conversion of riparian forest to grass has reduced aquatic habitat area (quantified by active channel width), channel width variability, wood frequency, mesoscale habitat diversity and obstruction habitat (wood and rock jams), and such conversion has increased the fraction of run and glide habitat. Channels with grassy riparian zones were only one‐third to three‐fifths of the width of channels with forested riparian zones, and channels with grassy or narrow forested riparian zones were nearly devoid of wood. Particle size metrics were strongly affected by stream power and agricultural cover in the basin, but the data suggest that elimination of riparian forest reduces median bed particle size. Results indicate that even modest increases in the extent and width of forested riparian buffers would improve stream habitat conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The paper defines an ecologically acceptable flow regime for the River Žrnovnica, Croatia. This is a small and relatively short karst river with high flows and high quality water, convenient for use for public water supply. Because the water from the river will be taken from the karst spring zone, the entire river channel could suffer negative ecological consequences. The main goal of setting minimum acceptable flows is to protect the Žrnovnica river food webs and to sustain the rare and endangered fish species Salmothymus obtusirostris. This paper presents results obtained from hydrological, morphological and biological investigations. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
The formation of large woody debris (LWD) piles has a profound impact on channel patterns and riparian succession in temperate rivers. The opportunity to study LWD along the Sabie River, a river in the semi‐arid region of Kruger National Park, South Africa, arose in February 2000 after a significant flood (c. 100‐year return interval) removed a large proportion of the fully mature riparian forest and other plant communities. Much of the uprooted vegetation was deposited as LWD piles (woody vegetation accumulations deposited on the ground > 0.1 m3) throughout the riparian and upland zones. In this article we describe the spatial distribution patterns of LWD as related to geomorphic channel type and flood frequency zone, and assess pile composition characteristics six months after the flood. Within the areas surveyed there were 68 LWD piles per hectare, the median size of LWD piles was 4.6 m3 but pile sizes (by volume) varied widely. Pool/rapid geomorphic channel types had the highest density of LWD piles (79 ha?1) and the largest piles (by volume) were in the bedrock anastomosing channels (mean = 124 m3). Piles were larger in the seasonal and ephemeral flood frequency zones (mean = 54 m3 and 55 m3) than piles in the active zone (c. 2 m3). The patterns of distribution and volume of LWD will affect the subsequent development of vegetation communities as debris piles form a mosaic of patches of surviving organisms and propagules that can strongly influence the initial trajectory of succession. The amount, distribution, and subsequent decomposition of LWD are different from that reported for temperate rivers, suggesting that the role of LWD may be different on non‐floodplain rivers such as the Sabie in semi‐arid South Africa. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号