首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A solar energy powered Rankine cycle using supercritical CO2 for combined production of electricity and thermal energy is proposed. The proposed system consists of evacuated solar collectors, power generating turbine, high-temperature heat recovery system, low-temperature heat recovery system, and feed pump. The system utilizes evacuated solar collectors to convert CO2 into high-temperature supercritical state, used to drive a turbine and thereby produce mechanical energy and hence electricity. The system also recovers heat (high-temperature heat and low-temperature heat), which could be used for refrigeration, air conditioning, hot water supply, etc. in domestic or commercial buildings. An experimental prototype has been designed and constructed. The prototype system has been tested under typical summer conditions in Kyoto, Japan; It was found that CO2 is efficiently converted into high-temperature supercritical state, of while electricity and hot water can be generated. The experimental results show that the solar energy powered Rankine cycle using CO2 works stably in a trans-critical region. The estimated power generation efficiency is 0.25 and heat recovery efficiency is 0.65. This study shows the potential of the application of the solar-powered Rankine cycle using supercritical CO2.  相似文献   

2.
A hydrogen production method is proposed, which utilizes solar energy powered thermodynamic cycle using supercritical carbon dioxide (CO2) as working fluid for the combined production of hydrogen and thermal energy. The proposed system consists of evacuated solar collectors, power generating turbine, water electrolysis, heat recovery system, and feed pump. In the present study, an experimental prototype has been designed and constructed. The performance of the cycle is tested experimentally under different weather conditions. CO2 is efficiently converted into supercritical state in the collector, the CO2 temperature reaches about 190 °C in summer days, and even in winter days it can reach about 80 °C. Such a high-temperature realizes the combined production of electricity and thermal energy. Different from the electrochemical hydrogen production via solar battery-based water splitting on hand, which requires the use of solar batteries with high energy requirements, the generated electricity in the supercritical cycle can be directly used to produce hydrogen gas from water. The amount of hydrogen gas produced by using the electricity generated in the supercritical cycle is about 1035 g per day using an evacuated solar collector of 100.0 m2 for per family house in summer conditions, and it is about 568.0 g even in winter days. Additionally, the estimated heat recovery efficiency is about 0.62. Such a high efficiency is sufficient to illustrate the cycle performance.  相似文献   

3.
The cogeneration of electricity and potable water utilising solar energy is studied, assuming solar tower power plants with the open volumetric PHOEBUS receiver. The results for alternative plant configurations show that the water production cost is about the same or even lower than the cost of water produced by conventionally fired systems. Furthermore, the integration offers a reduction of CO2-emissions related to the water production of up to 50%, additionally to the environmental benefits of solar electricity production.  相似文献   

4.
This paper studies the performance of a solar tower power plant (STPP) with chimney effect based on renewable energy proposed for electricity production. That's way, a solar tower prototype was constructed and tested in the Research and Technology Centre of Energy (CRTEn), Borj Cédria, northern Tunisia.The design involves heating air using solar energy and the chimney effect to raise the hot air up the chimney stack. The hot air velocity increases by the use of a convergent nozzle to reach a suitable velocity which can run the wind turbine. The kinetic energy of the hot air is then converted to electricity by the wind turbine.During this study, the influence of the climatic conditions of Borj Cédria site (insulation, ambient temperature) as well as the chimney height and the collector diameter on the amount of electricity production were investigated.The distribution and the evolution of the temperature at different positions of the prototype as well as the electrical energy produced were determined.The results reveal that when the temperatures reach 45 °C, the electric power reaches an average value of about 0.3 W/m2 for a solar tower prototype with 8 m of diameter and 2 m of height chimney.  相似文献   

5.
Unlike steam and gas cycles, the Kalina cycle system can utilize low-grade heat to produce electricity with water-ammonia solution and other mixed working fluids with similar thermal properties. Concentrated photovoltaic thermal systems have proven to be a technology that can be used to maximize solar energy conversion and utilization. In this study, the integration of Kalina cycle with a concentrated photovoltaic thermal system for multigeneration and hydrogen production is investigated. The purpose of this research is to develop a system that can generate more electricity from a solar photovoltaic thermal/Kalina system hybridization while multigeneration and producing hydrogen. With this aim, two different system configurations are modeled and presented in this study to compare the performance of a concentrated photovoltaic thermal integrated multigeneration system with and without a Kalina system. The modeled systems will generate hot water, hydrogen, hot air, electricity, and cooling effect with photovoltaic cells, a Kalina cycle, a hot water tank, a proton exchange membrane electrolyzer, a single effect absorption system, and a hot air tank. The environmental benefit of two multigeneration systems modeled in terms of carbon emission reduction and fossil fuel savings is also studied. The energy and exergy efficiencies of the heliostat used in concentrating solar radiation onto the photovoltaic thermal system are 90% and 89.5% respectively, while the hydrogen production from the two multigeneration system configurations is 10.6 L/s. The concentrated photovoltaic thermal system has a 74% energy efficiency and 45.75% exergy efficiency, while the hot air production chamber has an 85% and 62.3% energy and exergy efficiencies, respectively. Results from this study showed that the overall energy efficiency of the multigeneration system increases from 68.73% to 70.08% with the integration of the Kalina system. Also, an additional 417 kW of electricity is produced with the integration of the Kalina system and this justifies the importance of the configuration. The production of hot air at the condensing stage of the photovoltaic thermal/Kalina hybrid system is integral to the overall performance of the system.  相似文献   

6.
Abstract

Renewable energy sources are the best alternative for giving solution to the energy shortage and CO2 emission problems. Solar updraft tower is a relative novel technology for electricity production from solar energy. It consists of three main components; a solar air collector with absorber plate, central chimney, and a turbine. The objective of this work is to present complete design parameters of individual components of a small and less expensive prototype solar updraft tower. The main contents of this study are; solar radiation calculations, chimney design, solar wind turbine design calculations, heat loss and pressure loss estimations for collector. The pilot solar chimney power plant considered in this work consists of an air collector diameter of 3.5-m, the chimney diameter and height are 0.6 and 6?m, respectively. Theoretically the maximum velocity of air is achieved at chimney base is 1.9?m/s. The overall efficiency of the plant is estimated as 0.0019%.  相似文献   

7.
In this paper we introduce a model and an optimization methodology for terrestrial solar thermoelectric generators (STEGs). We describe, discuss, and justify the necessary constraints on the STEG geometry that make the STEG optimization independent of individual dimensions. A simplified model shows that the thermoelectric elements in STEGs can be scaled in size without affecting the overall performance of the device, even when the properties of the thermoelectric material and the solar absorber are temperature-dependent. Consequently, the amount of thermoelectric material can be minimized to be only a negligible fraction of the total system cost. As an example, a Bi2Te3-based STEG is optimized for rooftop power generation. Peak efficiency is predicted to be 5% at the standard spectrum AM1.5G, with the thermoelectric material cost below 0.05 $/Wp. Integrating STEGs into solar hot water systems for cogeneration adds electricity at minimal extra cost. In such cogeneration systems the electric current can be adjusted throughout the day to favor either electricity or hot water production.  相似文献   

8.
This paper analyses the technical possibilities which exist to avoid a large increase of carbon dioxide emissions produced by electricity generation in China.The paper evaluates different technical means such as wind energy, solar energy (thermal and Pl), hydro energy, tidal energy, geothermal energy and biomass for electricity production in China. The potential of each power source is estimated. In a final scenario, the influence of these technical means on the CO2 reduction in the year 2020 will be predicted.  相似文献   

9.
In this paper, the options of using Renewable Energy Sources (RES) in the power system of Cyprus are examined in order to reduce air pollutant emissions. Power generation is the major contributor to total emissions in Cyprus with a share of 36% in carbon dioxide (CO2), 62% in sulfur dioxide (SO2), 20% in nitrogen oxides (NOx) and 55% in nitrous oxide (N2O) emission according to the emission inventory for the year 2002. The emissions reduction potential in the energy system of Cyprus is notable since the use of RES for power generation has so far been negligible. The national action plan for the promotion of electricity production from RES for the years 2009–2013 includes large-scale projects of total capacity target 211 MWel, and in case is accomplished, there will be significant production of electricity, which is estimated to 11.2% of 2008 gross production. The resulting reduction of air pollutant emissions corresponds to 453 kt/yr of CO2, 4.69 kt/yr of SO2, 1.21 kt/yr of NOx, 0.26 kt/yr of N2O emissions and exceeds the emissions of Moni power station, the oldest in Cyprus and the one with the lower efficiency. Emissions reduction potential is even larger, since additional measures for rational use of electricity together with RES applications in final consumption sectors could contribute to decrease the demanded amount of electricity.  相似文献   

10.
This paper reports a thermodynamic comparison between the samarium and erbium oxide based solar thermochemical water splitting cycles. These cycles are a two-step process in which the metal oxide is first thermally reduced into the pure metal, and the produced metal can be used to split water to produce H2. The metal oxides can be reused for multiple cycles without consumption. The effect of water splitting temperature on various thermodynamic parameters which are essential to design the solar reactor system for the production of H2 via water splitting reaction using the samarium and erbium oxides is studied in detail. The total amount of solar energy needed for the thermal reduction of samarium and erbium oxides is estimated. The amount of heat energy released by the water splitting reactor is calculated. Also, the cycle and solar-to-fuel energy conversion efficiency for both cycles are determined by employing heat recuperation. Obtained results indicate that the efficiencies associated with these cycles are comparable to the previously studies thermochemical cycles. It is observed that higher water splitting temperature favors towards higher efficiencies. At constant thermal reduction temperature = 2280 K, by employing 50% heat recuperation, the solar-to-fuel energy conversion efficiency for the samarium cycle (30.98%) is observed to be higher than erbium cycle (28.19%).  相似文献   

11.
Solar energy, wind, sky radiation, daily temperature range, city organic wastes and waste water, and energy plants may be employed to meet all the energy needs of a purely residential town. The energy requirements of a residential town of 4000 inhabitants are estimated. No major change in people's life-style, except for low temperature cooking by steam, is introduced. Four methods of solar energy utilization are considered and it is concluded that the system in item 4 below is more suitable than the others.
1. (1) Central generation of electricity, hot or chilled water and steam (for low temperature cooking), and distribution to each building.
2. (2) Local generation of electricity, hot or chilled water, and steam, and central utilization of city wastes to produce methane gas for high temperature cooking.
3. (3) Central utilization of city wastes and growth of a plant for its energy values.
4. (4) Suitable design of the buildings to be heated or cooled passively through solar energy and other natural sources, local generation of hot water for washing and steam for low temperature cooking, central generation of electricity and central utilization of city wastes.
The transportation needs are to be met either by electricity or by a liquid fuel such as methanol, produced from an energy crop.  相似文献   

12.
Hydrogen production for export to Japan and Korea is increasingly popular in Australia. The theoretically possible paths include the use of the excess wind and solar energy supply to the grid to produce hydrogen from natural gas or coal. As a contribution to this debate, here I discuss the present contribution of wind and solar to the electricity grid, how this contribution might be expanded to make a grid wind and solar only, what is the energy storage needed to permit this supply, and what is the ratio of domestic total primary energy supply to electricity use. These factors are required to determine the likeliness of producing hydrogen for export. The wind and solar energy capacity, presently at 6.7 and 11.4 GW, have to increase almost 8 times up to values of 53 and 90 GW respectively to support a wind and solar energy only electricity grid for the southeast states only. Additionally, it is necessary to build-up energy storage of actual power >50 GW and stored energy >3000 GW h to stabilize the grid. If the other states and territories are considered, and also the total primary energy supply (TPES) rather than just electricity, the wind and solar capacity must be increased of a further 6–8 times. It is concluded that it is extremely unlikely that hydrogen for export could be produced from the splitting of the water molecule by using excess wind and solar energy, and it is very unlikely that wind and solar may fully cover the local TPES needs. The most likely scenario is production hydrogen via syngas from either natural gas or coal. Production from natural gas and coal needs further development of techniques, to include CO2 capture, a way to reuse or store CO2, and finally, the better energy efficiency of the conversion processes. There are several challenges for using natural gas or coal to produce hydrogen with near-zero greenhouse gas emissions. Carbon capture, utilization, and storage technologies that ensure no CO2 is released in the production process, and new technologies to separate the oxygen from the air, and in case of natural gas, the water, and the CO2 from the combustion products, are urgently needed to make sense of the fossil fuel hydrogen production. There is no benefit from producing hydrogen from fossil fuels without addressing the CO2 issue, as well as the fuel energy penalty issue during conversion, that is simply translating in a net loss of fuel energy with the same CO2 emission.  相似文献   

13.
Wind and solar photovoltaic electricity production have already reached very low levels of levelized cost of energy (LCOE). Electrolyzers have already reached high efficiencies which are further improving, while costs are dramatically reducing. They are commercial products. Green hydrogen (H2) is the product of excess wind and solar electricity, specifically electricity that will be otherwise wasted, without the huge energy storage needed presently almost completely missing. By growing the installed capacity of wind and solar power plants, there will be a non-dispatchable production by wind and solar more often in excess, but sometimes also in defect, of the grid demand, in presence of limited energy storage. H2 is one of the key energy storage technologies needed to ensure grid stability. Production of H2 above what is needed to stabilize the grid significantly helps in applications such as land, and sea but especially air transport where the storage of energy onboard in a fuel is preferable to the storage of energy as electricity into a battery. The engineered diagenesis for H2 is unlikely better than green hH2. Apart from being a nice idea to be proven workable, with a technology readiness level (TRL) presently of zero, and thus impossible to be objectively compared with commercial products, the engineered diagenesis for H2, even if possible, also does not help with non-dispatchable renewable energy production. The concept may also have negative environmental aspects similar to fracking which have not been considered yet, and also bear huge economic costs in addition to environmental. Here we review the pros and cons of this novel technology, which once proven workable, which is not the case yet, should be considered as a possible way to complement rather than replace green H2 production.  相似文献   

14.
The concept of a shallow solar pond energy conversion system is presented as an effective way to produce large-scale electric power from solar energy. Water is used both for heat collection and heat storage. Inexpensive layers of weatherable transparent plastic over the water suppress heat loss to the environment. The hot water is stored in an insulated reservoir at night. The stored hot water heats a thermodynamic fluid, probably Freon 11, which drives a turbine and an electric generator.A shallow solar pond system can be built using materials, fabrication techniques and geometries that are presently used on a large scale in U.S. insustry. A 10 MWe plant built in the Southwest would require a total area of about 2 km2 and could provide power for a community or a manufacturing process. The estimated busbar cost of electricity (1975 dollars) for a shallow solar pond system, which could come on line in as short a time as 5–7 yr, is 56 mills/kWh. This cost could be reduced with the development of improved and cheaper plastics and more efficient turbines.Another potentially important use of shallow solar ponds is to provide process hot water, up to the boiling point, for industrial and commercial purposes. Also, a shallow solar pond could provide hot water for the space heating, air conditioning and hot water needs of a community of homes or apartments.  相似文献   

15.
Solar energy is widely regarded as a major renewable energy source, which in future energy systems will be able to contribute to the security of energy supply and the reduction of CO2 emissions. This study combined an evaluation of solar energy resources in Taiwan with land use analysis, which allows the potentials and restrictions of solar energy exploitation resulting from local land use conditions to be considered. The findings unveiled in this study indicate that photovoltaic electricity generation and solar water heating have the potential of producing 36.1 and 10.2 TWh of electricity and thermal energy annually in Taiwan, accounting for 16.3% and 127.5% of the total domestic consumption of electricity and energy for household water heating in 2009, respectively. However, the exploited solar photovoltaic power generation in 2009 accounted for only 0.02% of total potential in Taiwan, while the exploited solar water heating accounted for 11.6% of total potential. Market price and investment incentive are the dominant factors that affect market acceptance of solar energy installation in Taiwan. The administrative barriers to the purchase and transmission of electricity generated from renewable energy sources have to be removed before the potential contribution of solar energy can be realized.  相似文献   

16.
This paper describes the status of geothermal energy utilization—direct use—in Hungary, with emphasis on developments between 2000 and 2002. The level of utilization of geothermal energy in the world increased in this period and geothermal energy was the leading producer, with 70% of the total electricity production, of all the renewable energy sources (wind, solar, geothermal and tidal), followed by wind energy at 28%. The current cost of direct heat use from biomass is 1–5 US¢/kWh, geothermal 0.5–5 US¢/kWh and solar heating 3–20 US¢/kWh. The data relative to direct use in Hungary decreased in this period and the contribution of geothermal energy to the energy balance of Hungary, despite significant proven reserves (with reinjection) of 380 million m3/year, with a heat content of 63.5 PJ/a at ΔT=40 °C, remained very low (0.25%). Despite the fact that geothermal fluids with temperatures at the surface higher than 100 °C are available, no electricity has been generated. As of 31 December 2002, the geothermal capacity utilised in direct applications in Hungary is estimated to be 324.5 MWt and to produce 2804 TJ/year. Geothermal heat pumps represent about 4.0 MWt of this installed capacity. The quantity of thermal water produced for direct uses in 2002 was approximately 22 million m3, with an average utilization temperature of 31 °C. The main consumer of geothermal energy is agriculture (68% of the total geothermal heat dedicated to direct uses). The geothermal water is used only in five spas for space heating and sanitary hot water (SHW), although there are 260 spas in the country, and the thermal water produced has an average surface temperature of 68 °C. The total heat capacity installed in the spas is approximately 1250 MWt; this is not provided by geothermal but could be, i.e., geothermal could provide more than three times the geothermal capacity utilized in direct uses by 31 December 2002 (324.5 MWt).  相似文献   

17.
This paper is an attempt to determine the potential for solar water heating (SWH) in South Africa and the prospects for its implementation between 2010 and 2030. It outlines the energy market conditions, the energy requirements related to residential and commercial water heating in the country and the solar water heating market dynamics and challenges. It was estimated that 98% of the potential is in the residential sector and the rest in the commercial sector. The total thermal demand for 20 years for water heating was estimated to 2.2 EJ. A ‘Moderate SWH implementation’ will provide 0.83 EJ of clean energy until 2030 and estimated cost savings of 231 billion rand. For an ‘Accelerated SWH implementation’ these figures are 1.3 EJ and 369 billion rand. The estimated accumulated reduction of CO2 emissions due to SWH can be as high as 297 Mt. The increased affordability of residential hot water due to SWH is an important social factor and solar water heating has a strong social effect.  相似文献   

18.
S. B. Riffat  X. Zhao 《Renewable Energy》2004,29(12):1965-1990
A theoretical analysis has been carried out to investigate the thermodynamic and heat transfer characteristics of a hybrid heat pipe solar collector/CHP system based on the assumption that the system operates on a typical Rankine cycle. Experimental testing of the prototype was also carried out using two types of turbine units. The variation of refrigerant pressures and temperatures, hot water temperatures in the collector and boiler systems, as well as chill water temperatures were recorded. The results were used to estimate the heat from the boiler and the solar collectors, the electricity and hot water generation (indicated as kW energy) from the CHP operation and the gas consumption of the system. The modelling and experimental results were compared for the impulse-reaction turbine system, and a simple analysis of the energy and environmental benefits of the system was carried out. The analysis indicated that the proposed system would save primary energy of approximately 3150 kWh per annum compared to the conventional electricity and heating supply systems, and this would result in reduction in CO2 emission of up to 600 tonnes per annum. The running cost of the proposed system would also be lower than conventional heating/power systems.  相似文献   

19.
《Biomass & bioenergy》2007,31(5):276-283
Belgium, being an EU country, has committed itself to a 7.5% reduction of greenhouse gas emissions during the first commitment period of the Kyoto Protocol. Within this framework, the Flemish government aims at reaching a share of 6% of renewable electricity in the total electricity production by 2010. In this work, the biomass production of birch, maple, poplar and willow in a short-rotation forestry (SRF) plantation after a 4-year growth period served as the base to calculate the amount of (electrical) energy that could be produced by this type of bioenergy crop in Flanders. The maximum amount of electricity that could be provided by SRF biomass was estimated at 72.9 GWhe year−1, which only accounts for 0.16% of the total electricity production in this region. Although the energy output was rather low, the bioenergy production process under consideration appeared to be more energy efficient than energy production processes based on fossil fuels. The high efficiency of birch compared to the other species was mainly due to the high calorific value of the birch wood. The maximum CO2 emission reduction potential of SRF plantations in Flanders was estimated at only 0.09% of the total annual CO2 emission. The most interesting application of SRF in Flanders seemed to be the establishment of small-scale plantations, linked to a local combined heat and power plant. These plantations could be established on marginal arable soils or on polluted sites, and they could be of importance in the densely populated area of Flanders because of other environmental benefits, among which their function as (temporary) habitat for many species.  相似文献   

20.
The long-run marginal cost of providing electricity for solar heating and hot water systems is estimated for three utilities and compared with the cost of providing electricity to electric-only systems. All investment, fuel, and operating costs are accounted for. Hot water systems and combined heating and hot water systems are analyzed separately. It is found that the marginal cost for solar backup is no more than the marginal cost of electricity used for purely electric heating and hot water devices and also no more than the incremental cost of normal load growth. For the three utilities studied, there appears to be little basis for rate distinctions between solar devices using electric backup and electric-only heating and hot water devices. “Off-peak storage” heating and hot water devices have a much lower marginal cost than the standard systems; again, there appears to be no basis for distinguishing between solar and electric off-peak devices. Compared with average cost pricing, marginal cost pricing offers benefits to customers using solar and electric heat and hot water, especially if a separate lower rate is adopted for off-peak storage devices; these benefits can amount to several hundred dollars a year. Substantial savings in the use of oil and gas fuels can be achieved if residences using these fuels convert to solar systems, savings not necessarily achievable by a shift, instead, to electric systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号