共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
由于在图像信息的获取和传输过程中,图像常常受到不同程度的脉冲噪声污染。为了有效地去除高浓度脉冲噪声,提出了一种基于中-均值滤波器的噪声去除算法。该方法根据脉冲噪声特点,设定一个简单的噪声检测算子,根据噪声检测结果设定自适应滤波窗口,同时根据噪声密度选择中值和均值滤波器。为了更加有效地保留图像的原有信息,对非噪声点不做滤波处理。仿真结果表明,所提出的中-均值滤波方法不仅能有效地去除高浓度的脉冲噪声,而且能很好地保留图像的原有信息,并具有较短的滤波处理时间。 相似文献
3.
4.
大部分自然图像同时包含高斯噪声和椒盐噪声,简单的运用传统的滤波算法不能得到理想的滤波效果。为了解决混合噪声图像的滤波问题,分别针对以高斯噪声为主的混合噪声图像和以椒盐噪声为主的混合噪声图像,提出了带修正因子的均值滤波算法和带修正因子的中值滤波算法。这两种算法是在修正后的阿尔法均值滤波算法的基础上做了两方面的改进:首先,提出在图像邻域内为不同灰度值的像素点给出归一化的权值,用这些权值和其对应的灰度值共同决定滤波输出。其次,所设计的权值可以用修正因子来进行微调,来获得理想的滤波效果。实验证明,其处理效果优于传统滤波算法和修正后的阿尔法均值滤波算法。 相似文献
5.
安凤平 《微电子学与计算机》2020,(2):57-62
本文借鉴具有自适应特性的一维局域均值分解算法(Local Mean Decomposition, BLMD),提出了二维局域均值分解算法(Bidimensional Local Mean Decomposition, BLMD).二维局域均值分解算法可以将源图像分解成多个二维生产函数分量(Bidimensional Product Function, BPF).思路为:先通过可变邻域窗法来获得分解过程中的极值点,而后利用分形理论对图像进行插值操作,并得到相应的均值曲面的等信息,再对筛分过程中相邻曲面之间在零值平面投影上不重合极值点数目进行统计和分析,给出符合图像本身特性的停止条件,保证分解得到的BPF分量能够真实反映图像的某类特征信息.最后,在此基础上形成本文提出的二维局域均值分解算法.通过实证分析表明,本方法可以自适应对图像进行分解. 相似文献
6.
通过对传统中值滤波的分析,针对传统中值滤波在图像去噪过程中的不足,提出了一种改进算法,根据图像细节特征进行阈值设定,给出噪声与复杂图像细节的判断方法。通过实验仿真该算法对椒盐噪声的抑制和复杂图像细节保护具有很好的鲁棒性和适应性。 相似文献
7.
8.
为了尽可能滤除图像中的椒盐噪声同时改善图像视觉效果,将改进自适应加权均值滤波与小波域图像增强技术有机结合,提出了一种具有增强效果的图像滤波算法。该算法分为滤波和滤波后处理两个阶段。滤波阶段,对经典均值滤波分别从噪声检测策略、权值计算机方法噪声滤波模版设计等方面进行适当改进,给出了具体实现步骤;滤波后处理阶段,首先将滤波后图像进行三层小波分解;然后构造出一种小波图像增强模型,根据小波系数的幅度值将其分为三个部分,分别进行不同程度的拉伸处理;最后进行拉伸后小波系数重构。将该滤波算法与经典均值滤波,加权均值滤波、自适应加权中值滤波等性能比较,实验结果表明,本文滤波算法在噪声滤除和图像细节保持方面,效果较好。 相似文献
9.
针对中值滤波算法在图像脉冲噪声处理中存在的不足,提出一种新的改进中值滤波算法.该方法根据噪声图像的极值和像素点滤波窗口的局部信息对滤波窗口内像素点(含待处理像素点)是否为噪声点进行判断,剔除滤波窗口内的噪声点,然后根据新的滤波窗口及待滤波的中心像素点灰度值信息进行滤波操作.以迭代的方法更新噪声图像中的每个像素点,从而去除图像中的脉冲噪声.实验结果表明,与传统中值、加权中值、多级中值滤波方法相比,该方法能有效去除图像中的脉冲噪声,并保持图像细节特征完整. 相似文献
10.
11.
为了在去除红外图像的脉冲噪声的同时,有效保持和恢复图像的边缘细节,提出了基于灰度特征和众数原则的迭代双边中值滤波方法。此方法根据脉冲噪声的灰度特征以及众数原则,将取最小和最大值、而在邻域的灰度分布上孤立的像素识别为噪声。根据基于空间距离和灰度相似的加权系数,对邻域中的无噪像素与已经去噪恢复的像素进行频次加权,用频次加权中值作为噪声像素的估计值。其中,以迭代遍历的方式执行去噪处理,充分利用前次遍历处理的结果,以去除高密度噪声。实验数据证明,此方法去噪所得的PSNR和EPI值以及视觉效果均优于现有方法,具有更好的去噪性能。 相似文献
12.
非线性滤波是一种有效的噪声抑制技术,得到了广泛的应用。文中针对标准中值滤波方法存在的不足,提出自适应中值滤波方法。该方法采用一定的检测标准对图像中的噪声点进行检测,并采用改进的中值滤波方法对噪声点进行滤波。实验结果表明,此方法较标准中值滤波具有更优良的滤波性能。 相似文献
13.
《AEUE-International Journal of Electronics and Communications》2014,68(12):1173-1179
An improved recursive and adaptive median filter (RAMF) for the restoration of images corrupted with high density impulse noise is proposed in the present paper. Adaptive operation of the filter is justified with the variation in size of working window which is centered at noisy pixels. Based on the presence of noise-free pixel(s), the size of working window changes. The noisy pixels are filtered through the replacement of their values using both noise-free pixels of the current working window and previously processed noisy pixels of that window. These processed noisy pixels are obtained recursively. The combined effort thus provides an improved platform for filtering high density impulse noise of images. Experimental results with several real-time noisy images show that the proposed RAMF outperforms other state-of-the-art filters quantitatively in terms of peak signal to noise ratio (PSNR) and image enhancement factor (IEF). The superiority of the filter is also justified qualitatively through visual interpretation. 相似文献
14.
基于红外图像成像的机理和热像仪工作方式,红外图像往往混有大量随机噪声,而这些都是造成红外图像和视频质量下降的重要原因。中值滤波是一种常用的非线性的滤波方式,对于图像降噪有很好的效果。中值滤波器的处理窗口大小需要提前设定且在处理过程中不能改变。噪声密度越大需要处理窗口越大,但也导致图像的细节相应越模糊。综合窗口大小对降噪能力和细节处理能力的影响,文中对传统的中值滤波器算法进行改进。实验表明,在中值滤波器去除噪声的过程中,随着窗口图像噪声分布情况动态调整窗口大小,能够做到既尽可能去除噪声,又尽可能保持图片的细节,使图像处理整体效果得到提升。 相似文献
15.
图像脉冲噪声移除是获得高质量图像的关键。本文通过热红外相机成像原理研究,提出了一种基于像素梯度自适应迭代中值滤波器的图像脉冲噪声抑制算法。首先,根据相机的调制传递函数计算获取原始图像的最大像素梯度,继而建立相应的像素梯度集合。然后,计算原始图像与对应像素梯度滤波图像的梯度权重均方根误差集合,并将该集合高斯分布的最大值对应的像素梯度确定为最佳像素梯度。最后,根据图像中脉冲噪声的密度和复杂度,确定所提滤波器的自适应窗口大小和迭代次数。大量实验结果表明,所提滤波器对移除8位、16位的单通道脉冲噪声图像展现出良好的鲁棒性。与其它先进方法相比,该方法可以实时移除真实热红外相机采集图像中低密度的随机值脉冲噪声和SAPN,并实现噪声抑制过程中99.5%以上的原始像素不会遭受破坏。除此之外,针对高密度SAPN抑制,该方法获得了具有竞争力的结果,与运行时间较快的滤波方法相比表现出较好的PSNR和SSIM,与PSNR和SSIM较优秀的去噪方法相比表现出较快的运行时间。对于极限SAPN(99%)破坏的图像,也能够恢复有意义的图像细节。 相似文献
16.
医学图像中往往有很多与脉冲噪声灰度相同的像素,因此含脉冲噪声的医学图像的恢复非常困难。为了获得比现有的脉冲噪声滤波器更好的噪声抑制和纹理结构保持效果,提出了一种双迭代等距均值滤波(dual iterative equidistant mean filter,DIEMF)的医学图像恢复方法。该方法采用等距离邻域进行噪声检测和去除;噪声检测器循环地利用邻域的非最值像素与中心像素之间的平均绝对差,以及利用多数原则,将噪声像素与无噪像素区分开来;噪声去除采用自适应和双迭代的方法,以等距邻域中无噪像素和先前恢复像素的平均值作为中心噪声像素的灰度估计值,充分利用最近的先前恢复的像素。实验结果表明,该方法在噪声抑制和纹理结构保持方面优于现有的方法,特别是对于低密度噪声,它比现有的滤波器具有显著的优越性。 相似文献
17.
18.
提出了一种基于噪声估计的自适应开关型中值滤波器(IASMNE,improved adaptive switching median filter based on noise estimation)。IASMNE以图像经小波变换后在不同尺度和不同方向提取的子带滤波系数值的统计信息构成刻画图像受噪声干扰程度的特征矢量,在大量噪声图像上获得的特征矢量为学习数据集,并利用支持向量回归(SVR)分析实现对图像中噪声比例的准确估计。基于此,IASMNE对高、中、低不同噪声比例图像启动不同的滤波策略,并灵活设置滤波参数。大量实验表明,与其它开关型滤波器相比,IASMNE能够合理地根据图像噪声干扰程度进行最佳滤波,尤其是对于大于70%的椒盐噪声(SPN)能够大幅度提高图像质量。 相似文献