首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Failure mechanisms were studied in a unidirectional carbon/epoxy composite under uniform and linearly varying longitudinal compression. The first failure mechanism is shear yielding or shear failure in the matrix precipitated by initial fiber misalignment. It was shown how an initial fiber misalignment of 1.5° can produce the measured compressive strength of 1725 MPa (250 ksi). Matrix failure is followed by fiber buckling and fracture, resulting in the formation of a kink band. The kink band orientation is constant in the range of β = 20–30°, whereas the kink angle a varies from a small initial value to a maximum value of 2β. Kink band widths varied between 4 and 20 fiber diameters. Kink bands can occur on different planes which can rotate along the band. Kink band multiplication or broadening with increasing stress was observed at points where the maximum kink angle was reached.  相似文献   

2.
通过试验及模拟对复合材料的轴向压缩失效过程进行了研究。试验中,采用高速摄像机对失效过程进行捕捉,并对最终破坏模式进行光学显微镜分析。基于纤维初始位错、纤维随机强度及基体Ducker-Prager塑性本构,通过有限元软件ABAQUS建立了复合材料轴向压缩的有限元模型,并对比分析剪切型及拉伸型两种不同初始位错模型的模拟结果。研究结果表明,复合材料轴向压缩包含弹性变形及塑性变形阶段,离散的纤维基体二维有限元模型能够有效模拟压缩的渐进损伤过程,且模拟结果与试验结果相吻合。复合材料轴向压缩强度是纤维初始位错及塑性基体剪切屈服共同作用的结果,其随着纤维初始位错幅值的减小、波长的增加及纤维体积分数的增加而增加。  相似文献   

3.
The initial misalignment of Kevlar fibres in Kevlar-epoxy composites is quantitatively investigated. This misalignment has been found to be one of the most important factors for determining the compressive response of these composites. A theoretical model, which considers initial fibre misalignment and assumes that the compressive response of Kevlar-epoxy composites is dominated by kink band failure, is in good agreement with experimental results. In addition, photomicrographs of the failure surfaces suggest that kink band formation is the predominant failure mode in this composite system.  相似文献   

4.
The effect of laminate thickness was investigated on the compressive behavior of unidirectional and crossply composites. A recently developed compression test method for thick composites was used to test specimens from 16 to 200-plies thick. In all cases the stress-strain behavior to failure is nonlinear and failure strength is matrix dominated. Longitudinal compressive failure is triggered by matrix failure accompanied by fiber microbuckling and the compressive strength is greatly degraded by initial fiber misalignment. The longitudinal compressive strength shows a mild trend of decreasing values with increasing thickness. It can be explained that, even if such a trend is significant, increasing size would have a diminishing effect on compressive strength for initial fiber misalignments greater than 1.5 to 2°. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The compressive response of polymer matrix fiber reinforced unidirectional composites (PMC's) is investigated via a combination of experiment and analysis. The study accounts for the nonlinear constitutive response of the polymer matrix material and examines the effect of fiber geometric imperfections, fiber mechanical properties and fiber volume fraction on the measured compressive strength and compressive failure mechanism.Glass and carbon fiber reinforced unidirectional composite specimens are manufactured in-house with fiber volume fractions ranging over 1060 percent. Compression test results with these specimens show that carbon fiber composites have lower compressive strengths than glass fiber composites. Glass fiber composites demonstrate a splitting failure mode for a range of low fiber volume fractions and a simultaneous splitting/kink banding failure mode for high fiber volume fractions. Carbon fiber composites show kink banding throughout the range of fiber volume fractions examined. Nonlinear material properties of the matrix, orthotropic material properties of the carbon fiber, initial geometric fiber imperfections and nonuniform fiber volume fraction are all included in an appropriate finite element analysis to explain some of the observed experimental results. A new analytical model predictionof the splitting failure mode shows that this failure mode is favorable for glass fiber composites, which is in agreement with test results. Furthermore, this modelis able to show the influence of fiber mechanical properties, fiber volume fraction and fiber geometry on the splitting failure mode.  相似文献   

6.
Results from an experimental investigation on the mechanical behavior of unidirectional fiber reinforced polymer composites (E-glass/vinylester) with 30%, 50% fiber volume fraction under dynamic uniaxial compression are presented. Specimens are loaded in the fiber direction using a servo-hydraulic material testing system for low strain rates and a Kolsky (split Hopkinson) pressure bar for high strain rates, up to 3000/s. The results indicate that the compressive strength of the composite increases with increasing strain rate. Post-test scanning electron microscopy is used to identify the failure modes. In uniaxial compression the specimens are split axially (followed by fiber kink band formation). Based on the experimental results and observations, an energy-based analytic model for studying axial splitting phenomenon in unidirectional fiber reinforced composites is extended to predict the compressive strength of these composites under dynamic uniaxial loading condition.  相似文献   

7.
The compressive mechanical properties of three dimensional (3D) braided composites are of key concern for design in actual engineering application. A representative volume cell (RVC) is chosen to study the uniaxial compressive mechanical properties of the braided composites with different braid angles by combing damage theory and finite element method. The fiber misalignment and longitudinal shear nonlinearity of braid yarn are considered in the computation model. And their influences on the compressive behavior of the braided composites are also evaluated. The damage development of constituents within the braided composites are obtained and analyzed. The main damage and failure modes and their interaction of braid yarn are provided as well. The numerical results are found that the compressive mechanical behavior of the braided composites with lower braid angle is sensitive to the fiber initial imperfection of braid yarn. The strength of the braided composites with different braid angle is controlled by the different microscopic failure modes.  相似文献   

8.
三维五向编织复合材料纵向性能的实验研究   总被引:9,自引:2,他引:9  
通过对具有不同编织结构参数的三维五向编织复合材料试件的纵向拉伸和压缩实验,分析了该类材料的纵向拉、压刚度和强度随编织工艺参数的变化规律以及材料的失效形式.三维五向编织复合材料在破坏前基本保持线弹性,纵向拉、压破坏具有脆性特征,拉伸模量和压缩模量比较接近,但拉伸强度远大于压缩强度.编织角和纤维体积含量对材料性能的影响显著,纱线粗细的影响不大.提高第五向纱线的比例,可提高材料的纵向性能.此外,研究中采用短标距薄板试件,以避免试件产生整体屈曲和端部纤维束开裂破坏.  相似文献   

9.
基于高强、高韧、高模和压拉平衡为特征的第三代先进复合材料的需求,综述了连续纤维增强树脂复合材料纵向压缩强度预测模型的发展历程。基于纤维微屈曲、纤维扭结带、联合预测模型及渐进损伤失效模型,分别讨论了连续纤维增强树脂复合材料压缩失效机制,并在联合预测模型基础上,探究了碳纤维(直径、模量、体积分数、初始偏角)、树脂基体(弹性模量、剪切模量)及纤维/树脂界面三要素对连续纤维增强树脂复合材料纵向压缩强度和压缩失效形式的影响。   相似文献   

10.
Recent experimental studies of compressive failure in fibre-reinforced polymeric composites have been analysed. It is shown that the parametric basis for most compressive strength models, i.e. pure plastic buckling controlled by matrix shear strength and initial fibre misorientation, is probably incomplete. It is argued that, instead, failure is triggered by the initiation of an unstable kink band prior to buckling instability, and that additional parameters (interfacial shear stress/strain; fibre strength) are responsible for this transition in mechanisms.  相似文献   

11.
X-ray computed tomography was used to obtain cross-sectional images of a unidirectional carbon fiber-reinforced plastic, where fiber locations in each cross-sectional image were identified. The three-dimensional model with fiber waviness was developed by connecting the fiber locations along the fiber direction. Numerical simulation for the initiation and formation of a kink-band during axial compression was performed using the three-dimensional finite element model. The load was increased almost linearly until it reached the compressive strength, after which both load and displacement were decreased, showing snap-back behavior. The matrix yielded locally with the increased axial compression, and fibers started to fall due to insufficient support by the yielded matrix. A kink-band was formed with an increase in the yielded area, and thus, the initiation of a kink-band was defined as the local yielding of the matrix. It was also shown that the kink-band was formed at the longitudinal location at which the average of initial local fiber misalignment angles in the cross-section was relatively large.  相似文献   

12.
Experiments carried out on pultruded fibre reinforced polyester resins show that, at moderate fibre volume fractions, the compressive strength of aligned fibre composites depends linearly on the volume fraction. The strength falls off when the fibre volume fraction,V f=0.4 with Kevlar and high strength carbon fibres. The effective fibre strength atV f<0.4 is much less than the tensile strength but it is close to the tensile strength with E-glass fibres and high modulus carbon fibres. Poor adhesion between fibres and matrix reduces the compressive strength, as does kinking the fibres when the fibre radius of curvature is reduced to below 5 mm. Misalignment of the fibres reduces the compressive strength when the average angle of misalignment exceeds about 10° for glass and carbon fibres. However, with Kevlar no such reduction is observed because the compression strength of Kevlar reinforced resin is only a very little better than that of the unreinforced resin.  相似文献   

13.
A study has been made of the effect of fiber misalignment and non-linear behavior of the matrix on fiber microbuckling and the compressive strength of a unidirectional fiber composite. The initial fiber misalignment constituted the combined axial and shear stress state in the matrix, and the state of stress just prior to the buckling was considered to be the initial state of stress in bifurcation analysis. The expression for the critical microbuckling stress was found to be the same as that for the elastic shear-mode microbuckling stress except that the matrix elastic shear modulus was replaced by the matrix elastic-plastic shear modulus. Incremental theory of plasticity and deformation theory of plasticity were used to model the matrix non-linearity. The analysis results showed reasonable correlation with available experimental data for AS4/3501-6 and AS4/PEEK graphite composites with 2° to 4° range of initial fiber misalignment.  相似文献   

14.
《Composites》1990,21(5):403-407
The effect of a misalignment angle between the fibres and loading axis of a unidirectional composite is analysed by considering the shear strains induced by the misalignment. It is shown that shear instability in the matrix drastically reduces the predicted compressive strength even for very small misalignments. The same trend is predicted for composites with initial fibre curvatures due to the misalignment angle associated with the curvature. The reduction in compressive strength often attributed to initial fibre curvature may therefore actually be due to fibre misalignment angles. Small misalignments are hard to avoid during the manufacture and testing of unidirectional composites and so these results cast serious doubts on the possibility of measuring a true ultimate compressive strength for this kind of material.  相似文献   

15.
魏悦广  杨卫 《工程力学》1992,9(1):11-18
本文基于弹塑性分叉理论研究单向纤维增强复合材料的压缩破坏模式和压缩强度对缺陷的敏感性问题。对于常见复合材料,所得结论是:无缺陷或者小缺陷情况的破坏模式为倾斜破坏带;大缺陷情况的破坏模式为水平破坏带;形成水平破坏带的压力值小于形成倾斜破坏带的压力。  相似文献   

16.
采用渗流铸造法制备了含不同体积分数W纤维的W_f/Zr基非晶合金复合材料,其中W_f体积分数分别为47%、66%、77%和86%。研究了W_f体积分数对Zr基非晶复合材料室温准静态压缩力学性能以及变形行为的影响。结果表明:随W_f体积分数的增加,W_f/Zr基非晶复合材料的屈服强度单调增大,塑性应变先增大后减小,W_f体积分数为66%时塑性应变最大,W_f/Zr基非晶复合材料塑性应变的变化主要取决于非晶基体和W_f相互作用的程度。随着应变量的增大,基体中剪切带的数量和密度也随之增大,主剪切带向大于45°方向偏转。由于压头的影响,W_f/Zr基非晶复合材料压缩过程中样品端部和中部的受力状态不同,导致两部分的剪切带方向也明显不同。随W_f体积分数的增大,W_f/Zr基非晶复合材料的断裂方式由剪切断裂向纵向劈裂转变,断裂行为符合摩尔库伦准则。  相似文献   

17.
The development of compression damage zones in fibrous composites   总被引:1,自引:0,他引:1  
Recent experimental work (Narayanan S, Schadler LS. Mechanisms of kink band formation in graphite/epoxy compsites: a micromechanical experimental study. Comp Sci Technol 1999; 59:2201-13) suggests that kink bands in unidirectional continuous carbon fiber reinforced polymer composites initiate from damage zones formed under axial compressive loads. A damage zone consists of a cluster of locally crushed fibers and broken fibers, that are often fractured at an angle, θ > 0°, normal to the fiber axis. Typically, under compressive loads, fiber breaks in damage zones form roughly along a plane at an angle φ, normal to the fiber axis. These damage zones produce stress concentrations which can lead to instabilities in the nearby fiber and matrix and initiate microbuckling and kink bands. This paper extends a micromechanical influence function technique based on earlier shear lag fiber composite models. Our modified technique calculates the fiber axial and matrix shear stress concentrations due to multiple angled and crushed fibers in arbitrary configurations. Modeling reveals that angled or ‘shear’ breaks (θ > 0°) can lead to higher shear stress concentrations in the matrix than transverse breaks (θ=0°). Also we find that the damage zone is more likely to form at an angle φ, which is greater than that of its individual fiber breaks, θ. When φ is slightly greater than θ, the shear stress in the surrounding matrix regions within the damage zone achieves a maximum, potentially weakening the matrix and interface and consequently leading to kink band formation. Monte Carlo simulations incorporating this stress analysis predict that the initiation and propagation of crushed and angled breaks progress roughly along an angle, φ ≈ 17° in a linear elastic system. When possible, our model results are compared to strain measurements of fiber composites under compression obtained by Narayanan and Schadler using micro-Raman spectroscopy (MRS).  相似文献   

18.
Experimental work on glass/epoxy composites shows that the compressive strength is sensitive to the method of gripping, that the failure mode in compression varies with fibre volume fraction, and that bending of the specimen may occur as a result of misalignment. Some aspects of these observations are examined. The critical Euler buckling load is significantly reduced if transverse shear occurs. The buckling load depends on specimen dimensions and a good deal of scatter results from this. The predicted compressive strength taking into account the effect of transverse shear and specimen geometry includes the experimental results within a wide scatter band. The present analysis based upon the macro-buckling of the specimen, reproduces some predictions of compressive strength based upon the micro-buckling of fibres.  相似文献   

19.
Summary This paper examines theoretically the stress distribution around fiber breaks in a unidirectional reinforced metal matrix composite, subjected to axial loading when plastic yielding of the matrix is allowed to occur. The composites considered have a ductile interphase, bonding the matrix to the fiber. The likelihood of failure of a fiber adjacent to the existing broken fiber is considered. Detailed and systematic results are given for composites with a wide range of fiber volume fractions, Young's modulus of the fibers and the matrix, interphase properties and Weibull modulus for the strength of the fibers. The objective is the optimization of these material and geometric variables to ensure global load sharing among the fibers in the longitudinal direction, which will give the composite good longitudinal strength. Calculations are carried out for transverse loading of the composite to determine the effect of the ductile interphase on the yield strength. Characteristics of the ductile interphase are determined that will provide good longitudinal strength through global load sharing and a relatively high yield strength in the direction transverse to the fibers. This, in turn, will allow control of the strength anisotropy of uniaxially reinforced metal matrix composites.  相似文献   

20.
Based on a concentric cylinder model, the analytical elastic–plastic solution of deformations and stresses for the composites reinforced with transversely isotropic, circumferentially orthotropic and radially orthotropic fibers subjected to axisymmetric thermo-mechanical loading is developed. How the plasticity, volume fraction, physical and mechanical properties of the matrix affect the elastic–plastic thermo-mechanical response of the composites is investigated. The plasticity of the matrix decreases greatly the axial compressive stress in the matrix, but more noticeably increases the axial compressive stress in the fiber. For the composites reinforced with transversely isotropic, circumferentially orthotropic and radially orthotropic fibers, decreasing the volume fraction, thermal expansion coefficient and Young's modulus, and increasing the yield stress and hardening parameter of the matrix can lower the maximum equivalent stress of the fiber. However, increasing the yield stress and hardening parameter of the matrix raises the maximum equivalent stress of the matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号