首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, a finite element failure model was created using ABAQUS to determine the location where delamination is initiated and its subsequent propagation. The effect of fibre-reinforced structures on delamination behaviour was studied. The composite T-joints were made of glass fabric infused with epoxy resin using a vacuum assisted resin transfer moulding technique. The veil layer and 3D weave techniques were employed to improve the properties in the through-thickness direction that can delay or prevent delamination when in service. All the pull-out tensile tests were conducted in an Instron testing machine using a specially designed test fixture. The 3D weave T-joints were found to have improved performance under both static and fatigue loading. Increasing the static properties increases fatigue life performance. The location for the through-thickness reinforcement plays an important role in extending fatigue life of the T-joints.  相似文献   

2.
采用树脂传递模塑(RTM)工艺制备了结构对称和非对称两种复合材料T型接头试样,并对其进行了静态拉伸力学试验,对比分析了两种结构的拉伸破坏模式、结构刚度及破坏载荷。同时基于T接头内聚力模型(CZM),研究了两种不同结构T型接头的拉伸破坏过程及失效机制,并对比分析了不同偏转角下T接头的层间应力。结果表明:不同结构T型接头的拉伸破坏模式不同,偏转角的存在使结构非对称T型接头夹角大侧圆弧受力明显高于小侧圆弧,导致接头首先在大侧夹角圆弧与三角区界面定向萌生初始裂纹,随后裂纹主要沿大侧腹板翻边与蒙皮的界面扩展,进而导致接头最终破坏,最终失效载荷较对称T型接头提高了15.3%,且结构刚度更大。有限元结果表明T型接头三角区的初始失效主要由层间正应力及剪应力引起,有限元分析的失效模式与试验一致,结构对称及非对称T型接头最终失效载荷与试验值均吻合较好;且随着偏转角的增加,腹板圆弧处层间应力逐渐减小,初始失效载荷将随之增大;初始破坏位置将转移至大侧夹角圆弧末端。  相似文献   

3.
为提高复合材料T型接头结构的拉伸强度,对接头中胶膜属性、圆弧区填充物属性和Z-pin增强三种结构参数对T型接头强度的影响进行了研究。设计了两种不同胶膜属性、两种不同填充材料和有无Z-pin的同尺寸试验件,完成拉伸试验,测得极限位移和极限拉伸强度,并进行了对比分析,同时研究了不同T型接头的损伤演化过程。结果表明:J299胶膜复合材料T型接头的极限位移和极限载荷相比于J116B胶膜分别提高了57.8%和64.7%;ZXC195增强芯复合材料T型接头的极限位移和极限载荷相比于单向带材料分别提高了51.7%和30.3%;Z-pin钉对复合材料T型接头的极限位移和极限载荷分别提高了190.8%和31.9%。三种结构参数均只影响接头的极限载荷和极限位移的大小,接头的整体刚度没有改变。胶膜属性对接头极限载荷的提高影响最大,而Z-pin对接头的极限位移提高影响最大。  相似文献   

4.
利用二维平面应变模型对Z-pin增强T型接头试样进行失效分析,采用内聚力模型模拟界面的破坏情况,通过在分层的上下界面加入非线性弹簧元模拟Z-pin的增强作用,非线性弹簧元的力学性能(桥联律)由细观力学方法获得,数值结果与试验值吻合较好。在已验证有限元方法的基础上,研究了Z-pin直径、密度及植入角度等对T型接头拉脱承载能力的影响。结果表明:Z-pin增强可显著提高T型接头的拉脱承载能力,与未Z-pin增强的T型接头相比,Z-pin增强明显延缓了掉载;T型接头的拉脱承载能力随Z-pin直径和密度的增加而增大,随植入角度的增大而减小;在所研究的角度范围内,当植入角度为60°时,T型接头的拉脱承载能力最好;Z-pin直径和密度对拉脱承载能力的影响远比植入角度的影响显著。  相似文献   

5.
基于热点应力法的管节点疲劳性能研究思路中,热点应力集中系数和疲劳寿命是描述焊接管结构节点疲劳性能的两个主要方面。对8个支管为圆管主管为内填充C50等级混凝土的方管节点试件(CT1~CT8)进行热点应力试验以确定其热点应力集中系数(SCF),在此基础上进行疲劳试验以确定其疲劳寿命(N3),并将试验结果与具有相同几何尺寸和受力条件的圆管-方管节点试验结果以及相关规范进行比较分析。研究表明,支管受轴向荷载下,圆管-方管混凝土节点较对应空钢管节点而言,节点区刚度分布有明显改善,前者SCF最大值均小于后者SCF最大值,具有更好的疲劳性能;已有规范中关于空钢管节点疲劳性能的S-N曲线不适用于进行圆管-方管混凝土T型节点的疲劳性能分析。  相似文献   

6.
This paper shows that a bio-inspired design methodology is an effective method to strengthen composite T-joints under bending loading. The ply angles in the laminate of a carbon/epoxy T-joint were tailored using an optimisation program mimicking the evolutionary process of adaptive growth in which the wood microfibril orientation in and around the tree branch-trunk joint is tailored to the prevailing bending loading condition. A single objective optimisation program with four ply angle input variables was used to compute the optimal design of the ply stacking pattern which minimised the interlaminar tensile stress in composite T-joints where delamination damage is initiated. FEA and experimental testing were performed to compare the structural properties of the bio-inspired T-joint against a base-line T-joint with a quasi-isotropic ply stacking pattern. The bio-inspired T-joint exhibited a higher bending failure initiation load (improved by 40%) and elastic strain energy capacity (increased by 75%) than the base-line T-joint.  相似文献   

7.
A series of tests have been conducted on tubular welded T-joints using out-of-plane bending. The complete test series is designed to measure the stress distribution and the fatigue strength, for this size of T-joint, under random loading. The work presented here includes the experimental strain analysis, together with Finite Element results, and fatigue crack growth measurements. These results show that it will be possible to estimate the fatigue life of T-joints using a fracture mechanics approach.  相似文献   

8.
利用二维平面应变模型对缝合增强试验件进行失效分析,采用内聚力模型模拟界面的破坏情况,通过在分层的上下界面加入非线性弹簧元来模拟缝线的增强作用,非线性弹簧元的力学性能(桥联律)由细观力学方法获得。有限元分析结果与试验值吻合较好。在此基础上,对缘条区的缝合增强进行缝线的材料、直径和缝合密度的参数化分析,研究各参数对T型接头拉脱承载能力的影响。结果表明:缝合可显著提高T型接头的拉脱承载能力,同时能使其在较大的加载位移下仍保持较高的承载性能。T型接头的拉脱承载能力随缝线直径和缝合密度的增大而增大,且直径和密度的影响显著。缝线的拉伸强度是影响缝线性能最主要的因素, T型接头的拉脱强度随缝线拉伸强度的升高而升高。T型接头的拉脱强度随缝线拉伸模量的降低而升高,但拉伸模量的影响较拉伸强度的影响小。   相似文献   

9.
王文杰  邵永波  夏辉 《工程力学》2012,29(6):138-145
从理论分析、试验测试及有限元模拟三个方面对环口板加固T型方钢管节点的极限承载力进行了初步的研究工作。首先基于塑性铰线模型推导出了环口板加固T型方钢管节的极限承载力计算公式。然后对2 个环口板加固T型方钢管节点试件及2 个对应的未加固节点试件进行了在轴压作用下的承载力试验测试,结果表明环口板可以明显提高管节点的极限承载力。通过有限元法对试验试件进行了数值模拟,其结果与试验结果吻合较好,因而使用有限元法对9 个不同节点尺寸的加固模型及对应的9 个未加固节点模型进行了模拟,结果发现加固后节点的承载力均大于未加固节点的承载力。环口板加固T型方钢管节点的极限承载力计算公式在环口板有足够刚度,节点破坏模式为由局部屈曲导致形成塑性铰线破坏时可以获得较为精确的结果。  相似文献   

10.
This paper presents an investigation into the failure mechanism and alternative design of composite sandwich T-joints subjected to pulling load. Based on a conventional design of sandwich T-joint as the baseline, numerical modeling and analysis using finite element (FE) method was performed to assess the strength against pulling load. The effect of a cutout in the web panel near the joint has been considered. To validate the models, sandwich T-joint samples were manufactured and tested. Detailed FE analysis and inspection of the experimental results indicated that the failure was mainly due to the excessive stress in the adhesive between the cleat flange and the T-joint base panel. The manufacture defects, which reduced the strength of the T-joint test samples had also been investigated. This has been further demonstrated by experimental results of repaired T-joint samples. A very good correlation between the test data and FE results were obtained. An unconventional design of T-joint for simpler manufacture process was proposed. Based on the design, T-joint samples were modeled, manufactured and tested to demonstrate the manufacture process and evaluate the improved strength.  相似文献   

11.
根据树脂传递模塑(RTM)成型的缎纹机织复合材料T型接头的结构特征和纤维布局特点, 基于ANSYS有限元数值分析平台, 建立符合其真实结构的几何模型和有限元分析模型。基于渐进失效强度预测方法的基本思想, 使用有限元计算软件ANSYS的参数化设计语言(APDL)开发相应的程序, 实现改进形式的Hashin失效准则。采用合适的最终失效评价方法, 建立二维机织结构复合材料T型接头受弯曲载荷时的渐进失效预测方法, 能够有效地模拟从初始加载到最终失效过程中机织复合材料T型接头结构的力学响应及损伤的萌生与发展, 并预测结构的静强度。   相似文献   

12.
Carbon fibre/epoxy T-stiffener-to-skin joint was reinforced through the thickness, either by insertion of Z-Fiber® before autoclave cure of prepreg or by tufting of dry preform with a glass thread before resin injection and cure. The joints pull-off resistance increased significantly for both types of T-joints under both quasi-static and fatigue loading conditions. In the case of the tufted joints, the delamination between the skin and the stiffener stopped completely and the samples failed in bending. It is shown that a finite element model is successful in reproducing qualitatively the cracking progression in the unreinforced and 3D reinforced T-joint provided that the action of the through-the-thickness reinforcement is modelled by discrete nodal forced placed so as to replicate the physical reality.  相似文献   

13.
This paper uses a bio-inspired design strategy based on tree branch joints to improve the damage tolerance of co-cured composite T-joints. The design of tree branch joints at different length scales from the microstructural to the macro-length scale was investigated. X-ray computed tomography of a pine tree revealed three main features of tree branch joints which provide high structural efficiency and damage tolerance: integrated design with the branch embedded into the centre of the trunk; three-dimensional fibril lay-up in the principal stress directions; and variable fibril density to achieve iso-strain conditions through the joint connection. Research presented in this paper adapts the embedded structural feature of tree joints into a carbon/epoxy T-joint. The flange plies were embedded to 25%, 50% and 75% of the depth of the skin of the composite T-joint to mimic the design of tree branch joints. Experimental testing revealed that the bio-inspired T-joint design with integrated adherends had increased normalised inelastic strain energy (defined as ductility), increased normalised absorbed strain energy to failure, and higher load-carrying capacity following damage initiation (damage tolerance) compared to a conventionally bonded T-joint. However, these improvements were achieved at the expense of earlier onset of damage initiation in the T-joints.  相似文献   

14.
《Composite Structures》2012,94(1):229-238
This paper presents an investigation into the failure mechanism and alternative design of composite sandwich T-joints subjected to pulling load. Based on a conventional design of sandwich T-joint as the baseline, numerical modeling and analysis using finite element (FE) method was performed to assess the strength against pulling load. The effect of a cutout in the web panel near the joint has been considered. To validate the models, sandwich T-joint samples were manufactured and tested. Detailed FE analysis and inspection of the experimental results indicated that the failure was mainly due to the excessive stress in the adhesive between the cleat flange and the T-joint base panel. The manufacture defects, which reduced the strength of the T-joint test samples had also been investigated. This has been further demonstrated by experimental results of repaired T-joint samples. A very good correlation between the test data and FE results were obtained. An unconventional design of T-joint for simpler manufacture process was proposed. Based on the design, T-joint samples were modeled, manufactured and tested to demonstrate the manufacture process and evaluate the improved strength.  相似文献   

15.
Numerical methods were employed to perform a detailed parametric study on composite T-joints with transverse stitching using the finite element method. This analysis was accomplished to discern the effects of key joint parameters including fiber insertion tow modulus, fiber insertion filament count, fiber insertion depth, and resin-rich interface zone thickness on T-joint displacement and damage initiation load. T-joint load conditions included flexure, tension, and shear. Significant results of the parametric finite element analysis indicate that under flexural loading, increasing the fiber insertion tow modulus and tow filament count increases the T-joint damage initiation load; increasing the fiber insertion depth reduces T-joint deflection; and reducing the web-to-flange interface thickness reduces the T-joint deflection. Fiber insertion tow filament count and modulus have a negligible effect on T-joint deflection under tension and initial damage load under shear.  相似文献   

16.
选用多层非屈曲经编织物(NCF)作为增强体, 提高了预成型体的铺覆效率及准确性, 同时根据T型接头的结构特点将其组合成工字梁形式并依此设计成型模具, 采用树脂传递模塑(RTM)成型工艺实现了复合材料T型接头的高效制造, 并对其拉伸和压缩力学性能进行了试验研究。结果表明: T型接头拉伸破坏由孔边蒙皮纤维拉断和腹板分层拉脱造成; 而压缩破坏则由腹板翻边分层屈曲和接头中部蒙皮纤维压断造成; T接头拉伸破坏载荷高于其压缩的破坏载荷。  相似文献   

17.
This study investigates the applicability of local stress- and energy-based approaches to the fatigue strength assessment of laser stake-welded T-joints. The T-joint has two crack-like notches with infinitesimal tip rounding on each side of the weld. The local approaches used are fictitious tip rounding of 1 and 0.05 mm and the approaches that assume zero rounding within this study, namely the stress intensity factor, the average strain energy density and the J-integral.It is shown that the slopes of the fatigue resistance curves vary between 4 and 8 under different loading conditions imposed on the joint. The slope value exhibits a linear relation with the dimensionless gradient of the maximum principal stress evaluated at the critical notch tip. The same linear relation between the slope and the gradient is valid for all approaches. Because of the slopes, which differ from the usual 3, the agreement of the T-joints with other steel joints is obtained at five million load cycles. The exception is the fictitious rounding concept of 0.05 mm, in which case the recommended design S–N curve with a slope of 3 appears overly conservative in a high-cycle regime.  相似文献   

18.
Z-pin/缝合对复合材料T型接头剪切承载能力的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
利用三维有限元模型对Z-pin/缝合增强试验件进行有限元分析,采用内聚力模型模拟界面的破坏情况,通过在分层的上下界面加入非线性弹簧元来模拟Z-pin/缝合的增强机制,非线性弹簧元的力学性能(桥联律)由细观力学方法获得。通过与试验结果的对比发现,由于未进行界面增强的T型结构的剪切承载能力已较高,Z-pin/缝合增强较难提高T型接头的剪切承载能力。从少数几种可提高T型接头的剪切承载能力的增强方案中可看到,应选择拉伸强度较高而拉伸模量较低的缝线来进行T型接头剪切界面增强设计。  相似文献   

19.
In the present study, it is aimed to compare mechanical behaviors of T-joint types with embedded and non-embedded supports subjected to bending moment. For this purpose, after experimental studies on the two different T-joint types were conducted, stress analyses in the T-joints were performed with a three-dimensional finite element method by considering the geometrical non-linearity and the material non-linearities of the adhesive (DP460) and adherend (AA2024-T3). Finally, stress analyses and experimental results show that the variation of the geometry of the bonding zone, e.g., embedding the supports, would change the stress distributions and strength of the joint. Additionally, it is seen that T-joints with embedded supports carry 30% more load than T-joints with non-embedded supports although their bending stiffnesses decrease.  相似文献   

20.
研究了焊趾TIG重熔对钛合金T型接头疲劳性能的影响,结果表明,经过焊趾TIG重熔和喷淋激冷处理后,焊趾部位残余应力可降低32%;在2×10~5疲劳次数循环基数下,焊趾重熔+喷淋激冷处理后接头疲劳强度可提高4倍;在260 MPa应力值水平下,焊趾重熔+喷淋激冷处理后,接头疲劳寿命提高3.3倍;焊趾重熔+喷淋激冷处理并进行超声波冲击消应力后,接头疲劳寿命提高9.9倍,疲劳性能明显优于采用两种方法单独进行处理时的接头疲劳性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号