首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To estimate annual average concentrations in Korean dwellings and the effective dose to the general public, nationwide surveys on radon were conducted in 1989, 1999-2000 and 2002-2005. The total number of dwellings was about 5600. A survey of thoron and its decay products was also conducted in 2002-2005. In 2008-2009, a new radon survey in 1100 public buildings was conducted. The annual arithmetic (AM) and geometric (GM) means of indoor radon concentration in total were 62.1 ± 66.4 and 49.0 ± 1.9 Bq m(-3), respectively. The annual AM and GM means of indoor thoron concentrations were 40.4 ± 56.0 and 10.7 ± 2.9 Bq m(-3), respectively. The radon and thoron concentrations in detached houses were much higher than those in apartments. The locations of the high radon or thoron houses seem to be correlated with the concentrations of their parent nuclides in surface soil. The mean individual doses of radon and thoron were calculated to be 1.65 and 0.17 mSv y(-1), respectively.  相似文献   

2.
Some areas of the world, called high background radiation areas (HBRAs), have anomalously high levels of natural background radiation and the population residing in the areas is exposed to higher levels of radiation doses than other parts of the world where the natural radioactivity contents are normal. In the present investigation, levels of radon, thoron and their progeny are studied in 110 houses in the coastal region of the Kollam district in the state of Kerala, India using the multi-detector twin cup dosimeter. Among these, 10 houses were studied in detail with five dosimeters in each house. Radon activity concentrations were found to vary from 7 to 100 Bqm(-3) and that of thoron from 4 to 66 Bqm(-3) in Neendakara panchayat. In Chavara panchayat, the variations of radon concentrations were from 7 to 83 Bqm(-3) and thoron concentrations were varied from 4 to 86 Bqm(-3). The occurrence of radon and thoron concentrations in the dwellings for both study areas shows that in 50% of the dwellings, the concentration of radon is about 25 Bqm(-3) and in 60% of the dwellings thoron concentration is about 15 Bqm(-3). The ratio of thoron-to-radon concentrations in the dwellings showed a mean value 0.55 (GM=0.45) for the region.  相似文献   

3.
The results of indoor radon survey in the South-Pannonian Province Vojvodina (Serbia and Montenegro) are presented. The sampling strategy was oriented towards suburban and urban regions in the Province. For the dwellings typical for such regions the geometric mean annual radon activity concentration of 76.1 Bq m(-3) is measured (1000 measurements). This result leads to the annual dose estimate of 4.3 mSv y(-1), which is above the recommended action limit of ICRP. For urban dwellings in Novi Sad (the Province capital), the annual mean value of 54 Bq m(-3) (220 measurements) is obtained. By comparison of these two results it is concluded that radon surveys based on measurements in urban environment may seriously underestimate the radon-related health risk. The elevated radon levels could not be explained by elevated uranium levels of surface soil.  相似文献   

4.
Indoor radon concentration measurement in the dwellings of Al-Jauf region of Saudi Arabia was carried out using passive radon dosemeters. The objective of this radon survey was to obtain representative indoor radon data of Al-Jauf region. The study is a continuation of radon survey in main cities of Saudi Arabia which constitutes a baseline for Saudi Arabia in the Radon World Atlas. A total of 318 passive radon dosemeters were distributed randomly in the region and placed for a period of 1 y starting from April 2004 to April 2005. The results of indoor radon concentration measurement in 136 dwellings distributed in Al-Jauf region are presented. The remaining dosemeters were lost in the dwellings or mishandled. The results showed that the average, minimum, maximum radon concentrations and standard deviation were 35, 7, 168 and 30 Bq m(-3), respectively. Geometric mean and geometric standard deviation of the radon distribution were found to be 28 and 1.83, respectively.  相似文献   

5.
The results of radon concentration measurements carried out in dwellings with natural ventilation for 1 y in Bangalore are reported. Measurements, covering three sessions of the day (morning, afternoon, night) were performed two times in a month for 1 y at a fixed place of each dwelling at a height of 1 m above the ground surface in selected dwellings. The low-level radon detection system (LLRDS), an active method, was used for the estimation of radon concentration. The measurements were aimed to understand the diurnal variation and the effect of ventilation rate and flooring type on indoor radon concentration. The geometric mean (± geometric standard deviation) of indoor radon concentration from about 500 measurements carried out in 20 dwellings is found to be 25.4 ± 1.54 Bq m?3. The morning, afternoon and night averages were found to be 42.6 ± 2.05, 15.3 ± 2.18 and 28.5 ± 2.2 Bq m?3, respectively. The approximate natural ventilation rates of the dwellings were calculated using the PHPAIDA--the on-line natural ventilation, mixed mode and air infiltration rate calculation algorithm and their effects on indoor radon concentrations were studied. The inhalation dose and the lung cancer risk due to indoor radon exposure were found to be 0.66 mSv y?1 and 11.9 per 10? persons, respectively. The gamma exposure rate was also measured in all the dwellings and its correlation with the inhalation dose rate was studied.  相似文献   

6.
On the basis of recent epidemiological findings, many international and national organisations have revised their recommendations and regulations on radon exposure in dwellings and workplaces, or are in the process to do it. In particular, new recommendations and regulations were recently published (or are going to be) by World Health Organization, Nordic Countries, International Commission on Radiological Protection, International, Atomic Energy Agency (and the other international organisations sponsoring the International Basic Safety Standards), European Commission. Although with some differences, these new documents recommend lower radon concentrations in indoor air, especially in dwellings, compared with previous ones. Moreover, preventive measures in all new buildings are more and more considered as one of the most cost-effective way to reduce the radon-related lung cancers, compared with previous approach restricting preventive measures in radon-prone areas only. A comprehensive national action plan, involving several national and local authorities, is generally considered a necessary tool to deal with the many complex actions needed to reduce the risk from radon exposure in an effective way.  相似文献   

7.
Indoor radon activity level and radon effective dose (ED) rate have been carried out in the rural dwellings of Ezine (Canakkale) during the summer season using Radosys-2000, a complete set suitable to radon concentration measurements with CR-39 plastic alpha track detectors. The range of radon concentration varied between 9 and 300 Bq m(-3), with an average of 67.9 (39.9 SD) Bq m(-3). Assuming an indoor occupancy factor of 0.8 and 0.4 for the equilibrium factor of radon indoors, it has been found that the 222Rn ED rate in the dwellings studied ranges from 0.4 to 5.2 mSv y(-1), with an average value of 1.7 (1.0) mSv y(-1). There is a possibility that low radon concentrations exist indoors during the summer season in the study area because of relatively high ventilation rates in the dwellings. A winter survey will be needed for future estimation of the annual ED.  相似文献   

8.
This paper deals with the results of the first-field use in the Balkans, i.e. Serbia and Republic of Srpska (Bosnia and Hercegovina), of a passive polycarbonate Mark II type and poliallyldiglycol carbonate (Cr-39) alpha track detectors sensitive to thoron as well as to radon. Both types of solid state nuclear track detectors were designed and supplied by National Institute of Radiological Sciences (NIRS), Chiba, Japan. The commercial names for these detectors which all have been field tested in Balkan rural communities are known as: UFO and RADUET passive discriminative radon/thoron detectors. No database of thoron and thoron progeny concentrations in dwellings in Serbia or Balkans region exist, and as a result, the level of exposure of the Serbian population to thoron and its progeny is unknown so far.  相似文献   

9.
Long-term (circa 3 months) simultaneous measurements of indoor concentrations of thoron gas, airborne thoron progeny and radon were made using passive alpha track detectors in 205 dwellings in Ireland during the period 2007-09. Thoron progeny concentrations were measured using passive deposition monitors designed at the National Institute of Radiological Sciences (NIRS), Japan, whereas thoron gas concentrations were measured using Raduet detectors (Radosys, Budapest). Radon concentrations were measured in these dwellings by means of NRPB/SSI type alpha track radon detectors as normally used by the Radiological Protection Institute of Ireland (RPII). The concentration of thoron gas ranged from <1 to 174 Bq m(-3) with an arithmetic mean (AM) of 22 Bq m(-3). The concentration of radon gas ranged from 4 to 767 Bq m(-3) with an AM of 75 Bq m(-3). For radon, the estimated annual doses were 0.1 (min), 19.2 (max) and 1.9 (AM) mSv y(-1). The concentration of thoron progeny ranged from <0.1 to 3.8 Bq m(-3) [equilibrium equivalent thoron concentration (EETC)] with an AM of 0.47 Bq m(-3) (EETC). The corresponding estimated annual doses were 2.9 (max) and 0.35 (mean) mSv y(-1). In 14 or 7% of the dwellings, the estimated doses from thoron progeny exceeded those from radon.  相似文献   

10.
Two studies aimed at defining radon prone areas in Toscana and Veneto, based on indoor measurements, are merged in this paper to extract the key points for a possible general methodology. In territorial units, the geometric mean (GM) and standard deviation (GSD) are evaluated from empirical data and the fraction of dwellings above the reference level (RL) is derived according to a log-normal model. In Toscana the sampling base is made of nearly 1,000 measurements (dwellings and kindergartens), apportioned according to the lithological classes (22) of the region. In Veneto 1,230 measurements in dwellings of the upper part of the region (estimates are given for the south), have been assigned to 6 x 5 km2 sequential units of the territory: the detection floor has been considered and results are referred to the regional mean dwellings condition with respect to the floor. Empirical GM and GSD values are corrected to increase statistical power based on two different methods. Maps of the percentages of dwellings with more than 200 Bq x m(-3) are presented. Areas with magmatic rocks in southern Toscana and northern parts of Vicenza and Belluno provinces in Veneto clearly emerge with more than 10% of dwellings above 200 Bq x m(-3). Efforts are required to establish proper confidence limits for estimates and to trace radon maps upon an administrative basis.  相似文献   

11.
Inhalation of radon ((222)Rn) and daughter products are a major source of natural radiation exposure. Keeping this in view, seasonal indoor radon measurement studies have been carried out in 68 dwellings belonging to 17 residential areas in Alexandria city, Egypt. LR-115 Type 2 films were exposed for four seasons of 3 months each covering a period of 1 y for the measurement of indoor radon levels. Assuming an indoor occupancy factor of 0.8 and a factor of 0.4 for the equilibrium factor of radon indoors, it was found that the estimated annual average indoor radon concentration in the houses surveyed ranged from 45 ± 8 to 90 ± 13 Bq m(-3) with an overall average value of 65 ± 10 Bq m(-3). The observed annual average values are greater than the world average of 40 Bq m(-3). Seasonal variation of indoor radon shows that maximum radon concentrations were observed in the winter season, whereas minimum levels were observed in the summer season. The season/annual ratios for different type of dwellings varied from 1.54 to 2.50. The mean annual estimated effective dose received by the residents of the studied area was estimated to be 1.10 mSv. The annual estimated effective dose is less than the recommended action level (3-10 mSv y(-1)).  相似文献   

12.
One important requirement for accurate monitoring of radon in working environments, dwellings, and outdoors is to ensure that the measurement instrumentation is properly calibrated against a recognized standard. To achieve this goal, the U.S. Department of Interior Bureau of Mines (BoM) Radiation Laboratory has participated since 1983 in a program to establish international radon measurement standards. Originally sponsored by the Organization for Economic Cooperation and Development (OECD), the program is also sponsored by the International Atomic Energy Agency. While the National Institute of Standards and Technology (NIST) radium solution ampules are acceptable to all participating laboratories as a primary standard, a method of transferring radon from the NIST source into each laboratory’s primary counting apparatus is a critical problem. The Bureau’s method transfers radon from the primary solution by bubbling 3 L of air through it into a steel cylinder. After homogenizing the radon concentrations in the cylinder, eight alpha-scintillation cells are filled consecutively and measured in a standard counting system. The resulting efficiency is 81.7±1.2%.  相似文献   

13.
It is a little surprising, but radon has been measured by our Institute for >50 y. In the first phase this was carried out in underground mines (up to the present day) but more and more attention has been paid to domestic dwellings and NORM workplaces. The number of the measurements (grab sampling underground, SSNTDs application) was relatively high. To the routine work of the Institute is added research and calibration for radon measuring organisations. Since the formation of the Czech Republic, our previous institution was reformed by the State Office for Nuclear Safety and is one of the two organisations whose main task is, among others, radon measurement.  相似文献   

14.
Indoor radon was systematically surveyed in the town of Niksic-the second largest town in Montenegro-which has some of its settlements built above red bauxite deposits. The radon concentrations were measured in 55 homes in 2002/03, in the summer and winter period, using CR-39 etched track detectors. The average annual radon concentrations were found to be lognormally distributed (geometric mean = 66.2 Bq m(-3), geometric standard deviation = 3.0) within the range from 10 to 966 Bq m(-3), with arithmetic mean of 122.7 Bq m(-3) and median of 61.7 Bq m(-3). Although the annual mean radon concentrations above the action level of 400 Bq m(-3) are found only in four dwellings, the indoor radon levels in the town of Niksic are relatively high when compared with the average in the South European countries, as well as with indoor radon levels in other regions in Montenegro.  相似文献   

15.
Hungarian detectors modified and developed at the National Institute of Radiological Sciences (NIRS), Japan were placed at different sites, including homes and underground workplaces in Hungary, in order to gain information on the average radon (222Rn) and thoron (220Rn) concentration levels. Measurements were carried out in dwellings in a village and a manganese mine in Hungary. The radon and thoron concentrations in the dwellings of the village in the summer period were found to be 154 (17-1083) and 98 (1-714) Bq m(-3), respectively. Considering the results of other radon measurements during the winter (814 Bq m(-3)) and summer (182 Bq m(-3)) periods, the thoron concentrations were also expected to be higher in winter. In the manganese mine, radon and thoron were measured at 20 points for 6 months, changing the detectors each month. The averages were 924 (308-1639) and 221 (61-510) Bq m(-3) for radon and thoron, respectively. These results showed significant variance with the date and place of the measurement.  相似文献   

16.
The results of a first phase of an indoor radon survey in a total of 1610 dwellings distributed in nine cities of the Eastern and the Western provinces of Saudi Arabia are presented. The objective of this radon survey was to obtain representative indoor radon data for seven cities in the Eastern province. Khafji, Hafr Al-Batin, Abqaiq, Qatif, Al-Ahsa, Dammam and Khobar and to compare this with two cities in the Western province, Madina and Taif. So far, detailed radon data is not available for Saudi Arabia: therefore, this radon survey provides a base line for Saudi Arabia in the Radon World Atlas. On average, 200 indoor radon dosemeters were distributed in each city and placed for a period of one year starting from May 2001 to May 2002. The total number of collected dosemeters was 847. A total of 724 houses and 98 schools were covered in this survey. The results of the survey in the cities showed that the overall minimum, maximum and average radon concentrations were 1, 137 and 22 Bq m(-3), respectively. Geometric mean and geometric standard deviations of the radon distribution were found to be 18 and 1.92, respectively. In one of the dwellings in Qatif city, radon concentration, measured by a passive system and then confirmed by an active system, was found to be 535 +/- 23 and 523 +/- 22 Bq m(-3), respectively. The result of a radon survey in 98 schools showed that the minimum, maximum and average radon concentrations were 1, 70 and 19 Bq m(-3), respectively. The average radon concentration for each city was also determined. The lowest average radon concentration (8 Bq m(-3)) was found in Al-Ahsa while the highest average concentration (40 Bq m(-3)) was found in Khafji.  相似文献   

17.
Simultaneous indoor radon, radon-thoron progeny and high-resolution in situ gamma spectrometry measurements, with portable high-purity Ge detector were performed in 26 dwellings of Thessaloniki, the second largest town of Greece, during March 2003-January 2005. The radon gas was measured with an AlphaGUARD ionisation chamber (in each of the 26 dwellings) every 10 min, for a time period between 7 and 10 d. Most of the values of radon gas concentration are between 20 and 30 Bq m(-3), with an arithmetic mean of 34 Bq m(-3). The maximum measured value of radon gas concentration is 516 Bq m(-3). The comparison between the radon gas measurements, performed with AlphaGUARD and short-term electret ionisation chamber, shows very good agreement, taking into account the relative short time period of the measurement and the relative low radon gas concentration. Radon and thoron progeny were measured with a SILENA (model 4s) instrument. From the radon and radon progeny measurements, the equilibrium factor F could be deduced. Most of the measurements of the equilibrium factor are within the range 0.4-0.5. The mean value of the equilibrium factor F is 0.49 +/- 0.10, i.e. close to the typical value of 0.4 adopted by UNSCEAR. The mean equilibrium equivalent thoron concentration measured in the 26 dwellings is EEC(thoron) = 1.38 +/- 0.79 Bq m(-3). The mean equilibrium equivalent thoron to radon ratio concentration, measured in the 26 dwellings, is 0.1 +/- 0.06. The mean total absorbed dose rate in air, owing to gamma radiation, is 58 +/- 12 nGy h(-1). The contribution of the different radionuclides to the total indoor gamma dose rate in air is 38% due to 40K, 36% due to thorium series and 26% due to uranium series. The annual effective dose, due to the different source terms (radon, thoron and external gamma radiation), is 1.05, 0.39 and 0.28 mSv, respectively.  相似文献   

18.
For this study, a geothermal area around Izmir-Dikili, located in the western part of Turkey, was chosen as a measuring site and the radon concentrations of environmental samples were determined. Indoor radon monitoring was performed for 3 months in dwellings located in different part of the region using passive CR-39 nuclear track detectors. The radon concentrations of water samples drawn from wells, municipal supplies, village fountains and spas in the area were measured using a liquid scintillation detector (Packard Tri-Carb 2770 TR/SL, A-277001). Soil samples collected from each location were analysed and (226)Ra concentrations were determined using a gamma ray spectrometer connected to an HPGe detector. Annual effective doses from radon inhalation and ingestion were calculated.  相似文献   

19.
The indoor radon concentration levels and their regional variationspattern, for two consecutive half-year periods, in a wide rangeof dwellings of some regions of Punjab and Haryana states havebeen studied. The objective was to find the relation betweenthe variations of indoor radon levels with the sub-soil andlocal geology, type of building materials utilised in the dwellingsof the region. Keeping this in view, indoor radon measurementshave been carried out in the dwellings of 30 villages aroundthe Tusham Ring Complex, Bhiwani district, Haryana, known tobe composed of acidic volcanics and associated granites, alongwith 11 villages of Amritsar District, Punjab. The indoor radonconcentration in the dwellings around Tusham (Haryana) was foundto vary from 120 ± 95 to 915 ± 233 Bq m–3,whereas radon levels varied from 60 ± 37 to 235 ±96 Bq m–3 for the dwellings studied in Punjab. We believethat local geology including embedded granitic rocks, and sub-soil,as well as building materials having higher radioactive content,is the major contributor for the higher indoor radon levelsobserved particularly in the dwelling around Tusham Ring complex,where some dwellings are showing higher radon concentrationsthan the ICRP recommendations. The environmental samples fromsome areas of Punjab state and around the Tusham Ring Complexof Haryana state have also been analysed for radon exhalationstudies. Higher values for radon exhalation rates have beenobserved for the Tusham's soil/rock specimens, as compared withsoil samples of the Amritsar region of Punjab.  相似文献   

20.
Extensive radon surveys have been carried out in many countries only in dwellings, whereas surveys in workplaces are rather sparse and generally restricted to specific workplaces/activities, e.g. schools, spas and caves. Moreover, radon-prone areas are generally defined on the basis of radon surveys in dwellings, while radon regulations use this concept to introduce specific requirements in workplaces in such areas. This approach does not take into account that work activities and workplace characteristics can significantly affect radon concentration. Therefore, an extensive survey on radon in different workplaces have been carried out in a large region of Italy (Tuscany), in order to evaluate radon distribution in workplaces over the whole territory and to identify activities and workplace characteristics affecting radon concentration. The results of this extensive survey are compared with the results of the survey carried out in dwellings in the same period. The workplaces monitored were randomly selected among the main work activities in the region, including both public and industrial buildings. The survey monitored over 3500 rooms in more than 1200 buildings for two consecutive periods of ~6 months. Radon concentration was measured by means of passive nuclear track detectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号