首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在25℃、浸出周期为42d条件下,实验研究用模拟地下水浸出的纯硅酸盐水泥、掺硅灰水泥、掺偏高岭土水泥和掺粉煤灰水泥的含铀固化体,比较掺入不同混合材料对硅酸盐水泥固化体滞留铀(Ⅵ)能力的影响。研究结果表明:掺入硅灰、偏高岭土可提高硅酸盐水泥固化体对铀(Ⅵ)的滞留能力;掺入粉煤灰则会降低硅酸盐水泥固化体对铀(Ⅵ)的滞留能力。  相似文献   

2.
水泥固化体的铯的浸出行为   总被引:6,自引:0,他引:6  
通过对硅酸盐水泥、碱矿渣水泥以及掺加沸石的碱矿渣水泥固化体在25℃和70℃下Cs ̄+的浸出行为研究发现,掺加30%沸石的碱矿渣水泥固化体28天Cs ̄+累积浸出量仅是硅酸盐水泥固化体的1/10,是碱矿渣水泥固化体的1/6-1/4。几种水泥固化体Cs ̄+的累积浸出分数Pt与t ̄(1/2)作图都呈折线关系,前3天Cs ̄+扩散系数大于后期。Cs ̄+的浸出主要取决于水泥固化体的结构致密程度和固化体连通孔溶液中游离Cs ̄+浓度,而后者则又与水化产物束缚Cs ̄+的能力成反比和水化产物的溶解度成正比。因此碱矿渣水泥固化Cs ̄+的能力大于硅酸盐水泥。同时探讨了水泥固化体Cs ̄+的浸出模型。  相似文献   

3.
碱矿渣水泥固化模拟高放废液的研究   总被引:2,自引:0,他引:2  
研究了用碱矿渣水泥固化模拟高放废液。结果表明,碱矿渣水泥在抗压强度、孔结构、Cs离子浸出性能及热稳定性等方面均优于硅酸盐水泥和高铝水泥。以碱矿渣水泥为基体,掺入适量沸石和硅灰,采用特殊工艺,在废物包容量小于25%时。固化体抗压强度65-100MPa,孔隙率小于10%,核素Cs和Sr离子浸出率仅为10~(-5)和10~(-6)g·cm~(-2)·d~(-1)的水平,与现有玻璃固化体性能相近。另外还探讨了核素离子在碱矿渣水泥固化体中的固化机理。  相似文献   

4.
碱矿渣-粘土复合水泥固化模拟放射性泥浆的可行性研究   总被引:2,自引:3,他引:2  
实验研究了碱矿渣粘土复合水泥(AASCM)固化模拟放射性泥浆的可行性。结果表明:模拟泥浆掺量、水胶比对AASCM与模拟泥浆拌合物的流动度以及温度对拌合物的凝结时间影响较大,实验用阴离子的种类对凝结时间影响较小。该水泥应用于固化工程时,宜在低于20℃的条件下施工。当胶砂比为1∶1、水胶比为0.45、模拟泥浆掺量为20%时,拌合物的流动度能满足施工要求,固化体的抗压强度满足GB14569.1—93要求,其固化体的浸出率较普通硅酸盐水泥的低。硅灰能够改善AASCM与模拟泥浆拌合物的和易性及降低其固化体的浸出率。  相似文献   

5.
谭宏斌  马小玲  李玉香 《同位素》2005,18(4):229-232
在25℃下,通过浸出试验,用模拟地下水浸出42 d,比较不同硅灰掺量时硅酸盐水泥固化体对铀的滞留能力。结果表明随硅灰掺量的增加,水泥固化体对铀的滞留能力也在增加;硅灰掺量为15%时,水泥固化体的扩散系数为7×10-3cm3.d-1,仅为不掺硅灰时的5.5%。  相似文献   

6.
为了实现放射性焚烧灰的稳定包容,研究了以矿渣为主要原料,添加水泥熟料、粉煤灰和沸石,选用水玻璃或硅(硫)酸钠等作为激发剂制备出碱激发胶凝材料。实验优选的固化基材为:矿渣含量65%(质量分数,下同),粉煤灰10%,沸石20%,水泥熟料2%,氢氧化钙3%。水玻璃作为激发剂其添加量为基材的5%。采用该基材制备固化体,当放射性焚烧灰包容量为30%、水灰比0.34~0.35,固化体机械性能良好。浸出性能测试结果表明:第35天铀的浸出率为6.0×10-6cm/d,225天长期浸出率较低。铀在固化体中的扩散系数计算结果表明,碱激发胶凝材料对铀的滞留性能较好。最后探讨了固化体的浸出机制。  相似文献   

7.
谭宏斌  李玉香 《核技术》2005,28(10):779-782
用硝酸铀酰[UO2(NO3)2·6H2O]模拟放射性废物铀(Ⅵ),在硅酸盐水泥中加入15%、25%、30%、35%、40%的硅灰;在180℃水热条件下反应一周后,研究不同硅灰掺量的硅酸盐水泥与铀(Ⅵ)反应的产物。用X射线衍射分析仪(XRD)检测反应产物,结果表明:在硅灰掺量为30%时,重铀酸钙开始转变为硅钙铀矿。  相似文献   

8.
介绍了用碱矿渣水泥固化高放废液新工艺。该工艺以碱矿渣水泥为基体,掺加适量沸石和硅灰,无需加温加压,利用静态爆破剂水化时产生的膨胀压,在限容下使水泥基体致密。其抗压强度、耐热性和浸出率等性能均优于其它水泥。当废物氧化物包容量为25%时,固化体抗压强度可达65~100MPa,孔隙率可小于10%,Cs和Sr的浸出率可分别达到10~(-5)g·cm~(-2)·d~(-1)与10~(-7)g·cm~(-2)·d~(-1)水平。高放废液碱矿渣水泥固化体与玻璃固化体性能相当;而固化工艺比玻璃法简单。此外,还探讨了固化机理,核素离子在碱矿渣水泥固化体中的形态。  相似文献   

9.
放射性废物水泥固化研究进展   总被引:7,自引:3,他引:4  
水泥化学的理论研究进展和新的水泥系列、混合材、外加剂及混凝土用纤维材料的研究成果,均可借鉴到放射性废物水泥固化的配方研究中。本文综述硅酸盐水泥、碱活化矿渣水泥、硫铝酸盐水泥等在放射性废物水泥固化研究中的应用现状,介绍火山灰质混合材、外加剂、纤维材料等在提高废物包容量、固化体强度、耐久性和降低核素浸出等方面的研究进展,以期为水泥固化配方的研究与开发提供新的思路。  相似文献   

10.
水泥固化体中Cs+浸出行为研究   总被引:1,自引:1,他引:0  
研究了25、40、70、90℃下碱矿渣 黏土复合胶凝材料(AASCM)和普通硅酸盐水泥(OPC)固化体中Cs+的浸出行为,并对浸出机理进行了探讨。结果表明:在25、40、70、90℃下,AASCM固化体和OPC固化体浸出行为不同,OPC固化体中Cs+的累积浸出分数在4个温度下趋于同一数值,而AASCM固化体中Cs+的累积浸出分数则随温度升高而增大。AASCM固化体中Cs+的存在状态为溶解态、吸附态及固溶态并存,而OPC固化体中则主要为溶解态和固溶态。AASCM固化体中处于吸附态和固溶态的Cs+接近90%,处于溶解态的约为10%;而OPC固化体中处于固溶态的约为40%,处于溶解态的约为60%。  相似文献   

11.
模拟放射性含硼废液的水泥固化研究   总被引:2,自引:1,他引:1  
为了比较硫铝酸盐水泥和普通硅酸盐水泥含硼废液的固化,为配方优化提供依据,研究采用两种配方对模拟放射性含硼废液进行水泥固化。测定了固化体28d抗压强度、抗浸泡性、抗冻融性和耐γ辐照试验后的强度损失,进行了模拟核素浸出试验,并对固化体水化产物进行XRD分析。结果表明,两种配方可有效固化模拟含硼废液,固化体28d抗压强度、各项试验强度损失和模拟核素浸出率均满足GB14569.1—93的要求,试验所用的硫铝酸盐水泥配方对Cs+的滞留能力优于普通硅酸盐水泥配方,固化体中的硼以B(OH)4-形式固溶在钙矾石中。  相似文献   

12.
针对高盐高碱低中水平放射性废液的特性,通过在普通硅酸盐水泥中掺入矿渣粉、粉煤灰和沸石作为矿物掺合料进行优化,获得固溶度大、低泌水率、流动性好、低核素浸出率的工艺配方,着重研究了水泥基材料组成、液灰比、盐浓度和促凝剂对扩展流动度、泌水率、凝结时间的影响规律。研究结果表明:矿物掺合料替代部分水泥可以发挥火山灰效应、减水效应,从而提高固化体对废液的包容量,改善拌合物的泌水、盐析现象;矿渣粉和粉煤灰有利于获得较高流动度的水泥拌合物,沸石可显著延长拌合物的凝结时间;随着高盐高碱低中水平放射性废液盐浓度的增加,扩展流动度减小,泌水率减小,凝结时间延长;三乙醇胺能有效缩短水泥固化的施工作业时间,掺量为1%时,PSFZ配方拌合物的初凝时间为262 min,终凝时间为302 min,可以满足施工作业要求。  相似文献   

13.
针对高盐高碱低中水平放射性废液的特性,通过在普通硅酸盐水泥中掺入矿渣粉、粉煤灰和沸石作为矿物掺合料进行优化,获得固溶度大、低泌水率、流动性好、低核素浸出率的工艺配方,着重研究了水泥基材料组成、液灰比、盐浓度和促凝剂对扩展流动度、泌水率、凝结时间的影响规律。研究结果表明:矿物掺合料替代部分水泥可以发挥火山灰效应、减水效应,从而提高固化体对废液的包容量,改善拌合物的泌水、盐析现象;矿渣粉和粉煤灰有利于获得较高流动度的水泥拌合物,沸石可显著延长拌合物的凝结时间;随着高盐高碱低中水平放射性废液盐浓度的增加,扩展流动度减小,泌水率减小,凝结时间延长;三乙醇胺能有效缩短水泥固化的施工作业时间,掺量为1%时,PSFZ配方拌合物的初凝时间为262 min,终凝时间为302 min,可以满足施工作业要求。  相似文献   

14.
碱矿渣胶凝材料固化废TBP的配方初步研究   总被引:1,自引:0,他引:1  
核工业中产生的放射性废磷酸三丁酯(TBP)存在巨大的潜在危害,其处理是一世界性难题,国内尚处于理论研究阶段。本文针对废TBP碱度大和有机物盐份高的特征,提出了碱激发胶凝材料的固化处理方法,并研究了激发剂用量、水解产物包容量和养护时间对固化体的机械性能、抗水性、抗冻融性、水化程度、碱度、矿物组成以及活性Al、Si含量的影响。与硅酸盐水泥和矿渣水泥相比,碱矿渣胶凝材料在固化TBP水解产物方面凸显优越性,当包容量为14.49%时,碱矿渣胶凝材料固化体28 d的强度为18.90 MPa,而硅酸盐水泥固化体的强度仅8.69 MPa。碱矿渣胶凝材料中Cs和Sr的抗浸出性、抗冻融和抗冲击性能均明显优于矿渣水泥和硅酸盐水泥。  相似文献   

15.
研究了富铝碱矿渣粘土矿物复合胶凝材料(RAAASCM)基模拟放射性泥浆固化体的机械强度、干缩性及抗浸出性能。结果表明:模拟泥浆掺量、胶砂比对固化体的抗压强度、抗冲击性影响较大,尤其是模拟泥浆的影响更为明显。当胶砂比为1∶1 ,水灰比为0 .45 ,模拟泥浆掺量为2 0 %时,固化体抗压强度及抗冲击性均满足GB 1 45 69.1 93要求。干缩主要发生在自固化体置于相对湿度为60 %±5 %的环境养护的2 0d内。模拟泥浆的掺入对富铝碱矿渣粘土矿物复合胶凝材料基固化体干缩性的影响较之普通硅酸盐水泥基固化体小。当胶砂比为1∶1 ,模拟泥浆掺量1 0 %~2 0 %时,两种基材固化体的干缩率相近。富铝碱矿渣粘土矿物复合胶凝材料基固化体的抗浸出性较普通硅酸盐水泥基固化体优越。固化体对Sr2 +的束缚比对Cs+的束缚牢固。  相似文献   

16.
放射性废离子交换树脂特种水泥固化体的微观结构分析   总被引:2,自引:0,他引:2  
研究了特种水泥 (ASC)树脂固化体的微观结构。用压汞实验比较了ASC特种水泥的树脂固化体和普通硅酸盐水泥 (OPC)固化体多孔性能 ,通过电镜扫描 (SEM )观察比较了ASC和OPC的微观晶体结构。分析结果发现ASC水泥固化体具有较好的孔形结构 ,这是ASC固化体浸出率低的原因 ;ASC水泥固化体晶体呈针状结构 ,OPC水泥固化体晶体呈片状结构 ,针状结构的力学性能和结构强度要比OPC的片状结构好 ,该结构是ASC固化放射性废树脂包容量大、强度高的根本原因。  相似文献   

17.
王冬  周际东  严生 《辐射防护》2003,23(4):231-236
研究了模拟高放废液加入NiSO4和K4[Fe(CN)6]预处理经碱矿渣水泥固化后Cs+的抗浸出性能.实验结果表明,NiSO4与K4[Fe(CN)6]反应生成的亚铁氰化钾镍在很宽的酸度、温度范围内对铯的离子交换是个较快的过程,且选择性高、稳定性好;经预处理的废液碱矿渣水泥固化体的抗Cs+浸出性能得到明显提高采用GB 7023-86方法,在25 ℃,第42 d,Cs+浸出率为未经预处理的固化体的3.24%,达到10-6 cm*d-1;采用MCC-1方法,90 ℃,第28 d,Cs+浸出率为未经预处理的4.85%,达到10-4 g*cm-2*d-1.  相似文献   

18.
王冬  严生 《辐射防护》2004,24(5):326-330
研究了模拟高放废液加入NiSO4和K4[Fe(CN)6]对碱矿渣水泥固化体抗压强度的影响。实验结果表明:NiSO4和K4[Fe(CN)6]的引入使得固化体凝结时间变慢、抗压强度下降;调整激发剂掺量到2%(NaOH提供的Na2O量) 3%(Na2SiO3提供的Na2O量)时(以Na2O占矿渣质量比例计),沸石掺量为15%,采用加压成型工艺,可有效提高固化体抗压强度。  相似文献   

19.
碱矿渣复合水泥固化模拟放射性焚烧灰   总被引:4,自引:0,他引:4  
用偏高岭土、沸石及聚合物乳胶粉改性的碱矿渣复合水泥进行了模拟放射性焚烧灰固化处置研究。结果表明:模拟放射性焚烧灰包容量为40%时,水泥固化体性能满足国标GB14569.1—93要求。Cs+的第42d浸出率(GB7023—86,25℃)最低为1.32×10-4cm/d,累积浸出分数仅为0.041cm。28d抗压强度最低为45.6MPa,且后期强度增长依然较高。碱矿渣复合水泥凝结迅速,克服了焚烧灰中某些成分对水化造成的不利影响。偏高岭土、沸石之间存在协同效应,显著提高固化体的抗压强度,同时改善对核素离子的固化能力。乳胶粉在固化体内形成三维网状结构,改善固化体韧性及抗冲击性,引入的微小气泡优化孔结构、提高耐久性,但导致抗压强度下降,掺量以5%为宜。  相似文献   

20.
目前,国内核电站或核设施产生的中低放废液都采用水泥固化进行处理,水泥浆及水泥固化体性能是水泥固化技术重点研究内容。本文采用普通硅酸盐水泥固化中低放废液模拟料液,研究不同液灰比条件下,搅拌时间和搅拌速度对水泥浆流动度和固化体28 d抗压强度、孔结构、显微结构和抗浸出性能的影响。结果表明:在相同液灰比下,随着搅拌时间的延长(10~50 min),水泥浆的流动度和固化体抗压强度呈现先增大后减小的趋势,而固化体的孔隙率和Sr2+浸出率随搅拌时间的延长呈递减的趋势,搅拌50 min的固化体的结构较搅拌10 min的固化体致密;用较大搅拌速度制备的固化体的抗压强度较高,且在搅拌30 min内,提高搅拌速度可提高浆料的流动度;然而长时间用较大速度搅拌制备的固化体的孔隙率较高,同时核素浸出率也较大。由于固化工艺过程中搅拌速度和搅拌时间会影响水泥浆的流动性和固化体性能,因此在水泥固化装置投入使用前,应通过大量实验来确定满足工艺要求且满足固化体性能的最佳搅拌参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号