首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many oxidized pollutants, such as nitrate, perchlorate, bromate, and chlorinated solvents, can be microbially reduced to less toxic or less soluble forms. For drinking water treatment, an electron donor must be added. Hydrogen is an ideal electron donor, as it is non-toxic, inexpensive, and sparsely soluble. We tested a hydrogen-based, hollow-fiber membrane biofilm reactor (MBfR) for reduction of perchlorate, bromate, chlorate, chlorite, chromate, selenate, selenite, and dichloromethane. The influent included 5 mg/L nitrate or 8 mg/L oxygen as a primary electron accepting substrate, plus 1 mg/L of the contaminant. The mixed-culture reactor was operated at a pH of 7 and with a 25 minute hydraulic detention time. High recirculation rates provided completely mixed conditions. The objective was to screen for the reduction of each contaminant. The tests were short-term, without allowing time for the reactor to adapt to the contaminants. Nitrate and oxygen were reduced by over 99 percent for all tests. Removals for the contaminants ranged from a minimum of 29% for chlorate to over 95% for bromate. Results show that the tested contaminants can be removed as secondary substrates in an MBfR, and that the MBfR may be suitable for treating these and other oxidized contaminants in drinking water.  相似文献   

2.
Increased tightening of air regulations is leading more electric utilities to install flue gas desulfurization (FGD) systems. These systems produce brine containing high concentrations of nitrate, nitrite, and selenate which must be removed before discharge. The H2-based membrane biofilm reactor (MBfR) was shown to consistently remove nitrate, nitrite, and selenate at high efficiencies. The maximum selenate removal flux reached 362 mgSe m(-2)d(-1) and was higher than that observed in earlier research, which shows continual improvement of the biofilm for selenate reduction. A low pH of 6.8 inhibited precipitation when treating actual FGD brine, yet did not inhibit removal. SO4(2-) was not removed and therefore did not compete with nitrate, nitrite, and selenate reduction for the available H2.  相似文献   

3.
Hydrogen-driven denitrification using the fiber membrane biofilm reactor (MBfR) was evaluated for consistent operation in tertiary wastewater treatment. The possibility of controlling the process rates, as well as biofilm parameters by supplying limited amounts of electron donor (hydrogen), was tested. Limiting the hydrogen supply proved to be efficient in controlling the biofilm growth and performance of the MBfR. Denitrification rates remained unchanged for both synthetic wastewater (SWW) and real municipal wastewater (MWW) effluent as well through the fluctuations in the substrate (NO3-N) concentration. The average denitrification rates were 0.50 (+/- 0.02) g NO3-N per day per m2 for SWW and 0.59 (+/- 0.04) g NO3-N per day per m2 for MWW. Biofilm density rather than thickness was the determining factor in substrate diffusion and biofilm sloughing, ultimately determining operating stability. Limited hydrogen supply assured constant volatile solids (VS) concentration in the biofilm. It was determined that VS/TS ratio higher than 0.25 assured stable biofilm operation. Decrease of VS/TS ratio below 0.25 led to shearing of the nonbiological outer layers of the biofilm. The values of chemical oxygen demand (COD), volatile suspended solids (VSS) and total suspended solids (TSS) in the final effluent were stable and well below wastewater effluent guidelines. Substitutions of bicarbonate with gaseous carbon dioxide as the carbon source did not affect denitrification rates despite lower than optimum pH conditions.  相似文献   

4.
The objective of this study was to develop an integrated nitrogen treatment system using autotrophic organisms. A treatment system consists of an aerobic hollow-fiber membrane biofilm reactor (HfMBR) and anaerobic HfMBR. In the aerobic HfMBR, a mixture gas of air and O2 was supplied through the fibers for nitrification. Denitrification occurred in the anaerobic HfMBR using H2 as the electron donor. The treatment system was continuously operated for 190 days. NH4-N removal efficiencies ranging from 95% to 97% were achieved at NH4-N concentrations of influent ranging from 50 to 100 mg N/L. When glucose was added to the influent, the simultaneous nitrification and denitrification occurred in the aerobic HfMBR, and nitrogen removal rates were changed according to the COD/NH4-N ratio of influent. In the anaerobic HfMBR, autotrophic denitrification using H2 occurred and the removal rates achieved in this study were 23-58 mg N/m2 d. In this study, the achieved removal efficiency was lower than other study findings; however, the result suggested that this hybrid HfMBR system can be used effectively for nitrogen removal in oligotrophic water.  相似文献   

5.
The H(2)-based membrane biofilm reactor was used to remove nitrate from synthetic ion-exchange brine at NaCl concentrations from ~3 to 30 g/L. NaCl concentrations below 20 g/L did not affect the nitrate removal flux as long as potassium was available to generate osmotic tolerance for high sodium, the H(2) pressure was adequate, and membrane fouling was eliminated. Operating pHs of 7-8 and periodic citric acid washes controlled membrane fouling and enabled reactor operation for 650 days. At 30 psig H(2) and high nitrate loading rates of 15 to 80 g/m(2) d, nitrate removal fluxes ranged from 2.5 to ~6 g/m(2) d, which are the highest fluxes observed when treating 30 g/L IX brine. However, percent removals were low, and the H(2) pressure probably limited the removal flux.  相似文献   

6.
A new oxygen supply method to biofilm is proposed for simultaneous organic carbon removal and nitrification. The main feature of the method is use of hydrophobic porous membrane or oxygen enrichment membrane as substratum of biofilm. In the biofilm formed on oxygen permeable membrane, oxygen is supplied from the bottom to the surface of the biofilm through the membrane while organic pollutants are supplied from the surface to the bottom of the biofilm. The oxygen supply method allows nitrifiers near the bottom region to grow with less competition from BOD oxidizers. The microbial population was investigated in the biofilm formed on hydrophobic microfilter. Nitrifiers grew mainly in the bottom region while denitrifiers grew in the middle region of the biofilm formed on the membrane. Simultaneous organic carbon removal and nitrification were carried out successfully by the biofilm. Furthermore, the potential of the new oxygen supply method was demonstrated with the biofilm formed on an oxygen enrichment-type biomass carrier in a single-stage treatment of domestic wastewater. The nitrification rate was about 1.9 g/m2d and was comparable to that in the conventional biofilm process designed especially for nitrification.  相似文献   

7.
Biofilms growing on different carrier media have a different response to the nutrients contained in wastewater. Biofilms have proven to be an alternative to the treatment of wastewater containing higher concentrations of contaminants. The main objective of this research was to compare two biofilm support media for the treatment of leachate from the anaerobic fermentation of solid wastes. The removal of organic matter and ammonia was achieved in two fixed bed biofilm reactors containing Kaldnes and Linpor support materials with specific surface areas of 490 and 270 m2/m3, respectively, and operating under the sequencing batch procedure during 204 days. The Linpor reactor achieved higher total COD removal than the Kaldnes reactor (47% and 39%, respectively). Linpor was shown to be less sensitive to influent COD changes than Kaldnes. The effluent total COD values of Kaldnes were higher than Linpor. The dissolved COD removal was 21% for both reactors. The average ammonia removal for Linpor was 72% and 42% for Kaldnes. The matrix of Linpor allows higher concentrations of microorganisms (as dry mass) than Kaldnes. The dry mass concentration was related to the "active" exposed surface area of the biofilm. This is considered to be the cause for the better performance of Linpor when compared with Kaldnes.  相似文献   

8.
Biofilm systems have been widely used in wastewater treatment plants. However, little information is available on the impact of toxic chemicals on the performance of fixed film systems. This study was aimed at evaluating the impact of copper on a biofilm system by examining a variety of parameters, including reactor pH, DO, substrate concentrations, secretion of extracellular polymeric substances (EPS), and copper removal and accumulation. The microbial communities in the biofilms were also examined using automated ribosomal intergenic spacer analysis (ARISA). Four rotating drum biofilm reactors were used to produce biofilms. One reactor was used to produce biofilms under copper free conditions; while the others were used to produce biofilms grown under three different copper contamination levels, namely 100 ppb, 200 ppb, and 500 ppb, for a prolonged period. The following results were obtained: (1) biofilm reactor performance was not significantly impacted as demonstrated by the pH, DO, substrate removal, and total solids in the effluent; (2) however, copper contamination inhibited EPS production in the biofilms; (3) copper removal efficiencies of 25-31% were obtained for the three copper contamination levels studied; (4) fixed films functionalized as a reservoir to accumulate more copper over time; and (5) copper contamination selected for specific species that were able to tolerate this stress and that may contribute to its remediation.  相似文献   

9.
The biofilm characteristics of a novel three-phase reactor, the circulating bed reactor (CBR), were studied using industrial prototype fed with primary and secondary settled effluent in conditions of tertiary N and secondary C+N nitrification. The results showed a high nitrification rate close to the intrinsic values for N and C+N conditions: up to 2 and 0.6 kgN-NH4 m-3 d-1, or 1.88±0.26 and 0.22±0.07 gN g-1 PR d-1, respectively. The application of an integrated approach for biofilm analysis enabled the better understanding of biofihn dynamics. The biofilm remained relatively thin, below 100 μm, indicating an effective control of the biofilm development. Protein, measured by the conventional colometric method and pyrolysis-GCMS, was the major fraction accounting for up to 35% of the biomass dry weight and 58% of the biopolymer content. The polysaccharide's fraction remained very low (<3%). The ribosomal RNA probes analysis confirmed the predominance of bacterial cells in the CBR biofilm (80–86% of bacteria versus the universal probe) showing a high proportion of nitrifying bacteria accounting for up to 50% and 27% in the N and C+N removal respectively. Nitrosomonas predominated in tertiary nitrification whereas carbon input led to the appearance of other ammonia oxidizers. This particular composition was characterized by a high state of oxidation of the biomass, expressed by the low COD/DW ratio of about 0.85. In conclusion, it can be stated that this new three-phase bioreactor ensures a high nitrification rate through an effective biofilm control promoting the development of bacterial cells, especially nitrifying bacteria, and minimizing exopolysaccharides production.  相似文献   

10.
The effect of moving bed biofilm reactor (MBBR) loading rate on membrane fouling rate was studied in two parallel units combining MBBR and membrane reactor. Hollow fiber membranes with molecular weight cut-off of 30 kD were used. The HRTs of the MBBRs varied from 45 min to 4 h and the COD loading rates ranged from 4.1 to 26.6 g COD m(-2) d(-1). The trans-membrane pressure (TMP) was very sensitive to fluxes for the used membranes and the experiments were carried out at relatively low fluxes (3.3-5.6 l m(-2) h(-1)). Beside the test with the highest flux, there were no consistent differences in fouling rate between the low- and high-rate reactors. Also, the removal efficiencies were quite similar in both systems. The average COD removal efficiencies in the total process were 87% at 3-4 h HRT and 83% at 0.75-1 h HRT. At high loading rates, there was a shift in particle size distribution towards smaller particles in the MBBR effluents. However, 79-81% of the COD was in particles that were separated by membranes, explaining the relatively small differences in the removal efficiencies at different loading rates. The COD fractionation also indicated that the choice of membrane pore size within the range of 30 kD to 0.1 microm has very small effect on the COD removal in the MBBR/membrane process, especially with low-rate MBBRs.  相似文献   

11.
A four-stage rotating biological contactor (RBC) was designed and operated to treat synthetic wastewater containing 1,000 mg/l chemical oxygen demand (COD) and 112 mg/l NH(4)(+)-N. A mixed culture bacterial biofilm was developed consisting of a heterotrophic bacterium Paracoccus pantotrophus, nitrifiers and other heterotrophs. Applying the peculiar characteristics of P. pantotrophus of simultaneous heterotrophic nitrification and aerobic denitrification, high simultaneous removal of carbon and nitrogen could be achieved in the fully aerobic RBC. The microbial community structure of the RBC biofilm was categorized based on the nitrate reduction, biochemical reactions, gram staining and morphology. The presence of P. pantotrophus within the RBC biofilm was confirmed with an array of biochemical tests. Isolates from the four stages of RBC were grouped into complete denitrifiers, incomplete denitrifiers and non-denitrifiers. This categorization showed a higher relative abundance of P. pantotrophus in the first stage as compared with subsequent stages, in which other nitrifiers and heterotrophs were significantly present. High total nitrogen removal of upto 68% was in conformity with observations made using microbial categorization and biochemical tests. The high relative abundance of P. pantotrophus in the biofilm revealed that it could successfully compete with other heterotrophs and autotrophic nitrifiers in mixed bacterial biomass.  相似文献   

12.
Nitrate and pesticide contaminated ground- and surface-waters have been found around the world as a result of the use of these compounds in agricultural activities. In this study we investigated a biological treatment method to simultaneously remove nitrate and pesticides from contaminated water. Methane was supplied as the sole source of carbon to the microbial culture. A methane-fed membrane biofilm reactor (M-MBfR) was developed in which the methane was supplied through hollow-fiber membranes to a biofilm growing on the membrane surface. A methane-oxidizing culture enriched from activated sludge was used as inoculum for the experiments. Removal of nitrate and the four pesticides atrazine, aldicarb, alachlor, and malathion was examined both in suspended culture and in the M-MBfR. The maximum denitrification rate with suspended culture was 36.8 mg N gVSS(-1) d(-1). With the M-MBfR setup, a hydraulic retention time of approximately one hour was required to completely remove an incoming nitrate concentration of about 20 mg NO3-N l(-1). The microbial culture could remove three of the pesticides (aldicarb, alachlor, and malathion). However, no atrazine removal was observed. The removal rates of both nitrate and pesticides were similar in suspended culture and in membrane-attached biofilm.  相似文献   

13.
Concentrated animals feeding operations (CAFOs) often pose a negative environmental impact due to the uncontrolled spreading of manure into soils that ends up in the release of organic matter and nutrients into water bodies. Conventional aerobic methods treating CAFOs wastewater require intensive oxygenation, which significantly increases the operational costs. The alternative proposed in this research is the application of micro-algae based systems by taking advantage of the cost-effective in situ oxygenation via photosynthesis. A 4.9 L enclosed tubular biofilm photo-bioreactor was inoculated with an algal-bacterial consortium formed by the micro-algae Chlorella sorokiniana and a mixed bacterial culture from an activated sludge process. C. sorokiniana delivers the O(2) necessary to accomplish both organic matter and ammonium oxidation. The reactor was fed with diluted swine wastewater containing 180, 15 and 2,000 mg/L of NH(4) (+)-N, soluble P and total COD, respectively. The photo-bioreactor exhibited good and sustained nutrient removal efficiencies (up to 99% and 86% for NH(4) (+) and PO(4) (3-), respectively) while total COD was removed up to 75% when the biofilm was properly established. Liquid superficial velocities up to 0.4 m/s (achieved by culture broth recirculation) hindered the formation of a stable biofilm, while operation at velocities lower than 0.1 m/s supported stable process performance. The high shear stress imposed by the centrifugal recirculation pump disintegrated the large aggregates detached from the biofilm, which resulted in a poor settling performance and therefore poor COD removal efficiencies. Enclosed biofilm photo-bioreactors therefore offer a potentially more economical alternative to conventional tertiary treatments process.  相似文献   

14.
The ability of bacterial cultures to create biofilm brings a possibility to enhance biological wastewater treatment efficiency. Moreover, the ability of Anammox and Nitrosomonas species to grow within the same biofilm layer enabled a one-stage system for nitrogen removal to be designed. Such a system, with Kaldnes rings as carriers for biofilm growth, was tested in a technical pilot plant scale (2.1 m(3)) at the Himmerfj?rden Waste Water Treatment Plant (WWTP) in the Stockholm region. The system was directly supplied with supernatant originating from dewatering of digested sludge containing high ammonium concentrations. Nearly 1-year of operational data showed that during the partial nitritation/Anammox process, alkalinity was utilised parallel to ammonium removal. The process resulted in a small pH drop, and its relationship with conductivity was found. The nitrogen removal rate for the whole period oscillated around 1.5g N m(-2)d(-1) with a maximum value equal to 1.9 g N m(-2)d(-1). Parallel to the pilot plant experiment, a series of batch tests were run to investigate the influence on removal rates of different dissolved oxygen conditions and addition of nitrite. The highest nitrogen removal rate (5.2g N m(-2)2d(-1)) in batch tests was obtained when the Anammox process was stimulated by the addition of nitrite. In the simultaneous partial nitritation and Anammox process, the partial nitritation was the rate-limiting step.  相似文献   

15.
Wastewater discharge from coal refining plants contains a number of biologically toxic compounds; 2000-2500 mg/l of COD of which 40% is composed of phenol, 100-400 mg/l of thiocyanate, 10-40 mg/l of cyanide, 100-250 mg/l of NH4+-N and 150-300 mg/l of total nitrogen. In order to treat this kind of high strength wastewater, we have developed a high performance biofilm process using fluidizing bio-carriers of the tube chip type. The fluidizing biofilm carriers are made of a composite of polyethylene and several inorganic materials, whose density is controlled at 0.97-0.98 g/ml. The fluidizing biofilm carriers show sound fluidization characteristics inside bioreactors. The wastewater is treated using three consecutive series reactors in oxic-anoxic-oxic arrangement. Each reactor is charged with the fluidizing biofilm carriers of 50 vol%. Furthermore, newly cultured active microorganisms for the thiocyanate biodegradation are added in the biofilm process. At total hydraulic retention time of 2.2 days, this process can achieve steady state removal efficiencies: COD, 99%; thiocyanate, 99%; NH4+-N, 99% and total nitrogen, 90%.  相似文献   

16.
In our previous papers we have demonstrated that biofilm structure never reaches a steady state in biofilm reactors; in this paper we link this fact to biofilm detachment and to the oscillating pattern of biofilm accumulation. In one respect reactors supporting suspended microbial growth and reactors supporting attached microbial growth (biofilms) are similar: in both the biomass accumulates in the reactor and is disposed of with the effluent. However, while in reactors with suspended microbial growth biomass accumulation and disposal occur simultaneously, in biofilm reactors these two processes are separated in time. Biomass accumulation in biofilm reactors shows a distinct pattern composed of three phases: (1) growth, (2) detachment, (3) regrowth. Despite this distinct pattern of biofilm accumulation observed at the microscale, biofilm reactors do reach a steady state of substrate removal.  相似文献   

17.
This paper describes the performance, sludge production and biofilm characteristics of a full scale fluidized bed anaerobic reactor (32 m3) for domestic wastewater treatment. The reactor was operated with 10.5 m x h(-1) upflow velocity, 3.2 h hydraulic retention time, and recirculation ratio of 0.85 and it presented removal efficiencies of 71+/-8% of COD and 77+/-14% of TSS. During the apparent steady-state period, specific sludge production and sludge age in the reactor were (0.116+/-0.033) kgVSS. kgCOD(-1) and (12+/-5)d, respectively. Biofilm formed in the reactor presented two different patterns: one of them at the beginning of the colonization and the other of mature biofilm. These different colonization patterns are due to bed stratification in the reactor, caused by the difference in local-energy dissipation rates along the reactor's height, and density, shape, etc. of the bioparticles. The biofilm population is formed mainly of syntrophic consortia among sulfate reducing bacteria, methanogenic archaea such as Methanobacterium and Methanosaeta-like cells.  相似文献   

18.
生物生态法是目前国内外治理河湖水体富营养化的主要方法,但使用单一净化装置的处理效果均不甚理想,故将生物生态法中的生物膜法、曝气富氧法和生态浮床法相结合,开发了一套新型膜曝气生物膜-生态浮床立式组合净化装置。试验结果表明,组合装置较水体自净和单一净化装置可显著提高水体净化效果。具体表现在:组合装置、生物膜反应器、生态浮床和河水自净作用对NH_4~+-N的去除率分别为98.0%、96.6%、66.6%和48.5%,组合装置较河水自净作用的去除率可提高49.5%;对TN的去除率分别为34.7%、26.9%、19.3%和9.6%,去除率可提高25.1%;对TP的去除率分别为60.7%、33.9%、86.9%和38.5%,去除率可提高22.2%;对COD_(Mn)的去除率分别为78.3%、53.1%、58.4%和40.2%,去除率可提高38.1%。同时,组合装置对叶绿素a同样具有最强的抑制作用且可大幅提高水体透明度,减少水体黑臭现象的发生,这一结果为该装置应用于受污染河道的水体修复提供了科学依据。  相似文献   

19.
20.
The objective of this study was to investigate the change in microbial community pattern with the effect of cleaning agent using a quinone profile that is used for membrane in-line chemical cleaning in SMBR. The dominant quinone types of biofilm were ubiquinone (UQs)-8, -10, followed by menaquinone (MKs)-8(H4), -7 and UQ-9, but those of suspended microorganisms were UQ-8, UQ-10 followed by MKs-8(H4), -7 and -11. Both UQ and MK contents decreased with increasing NaCIO dosage and it seems that there is more resistance from UQ compared to MK. In addition, COD and DOC concentrations increased with increasing NaClO dosage up to 0.05 g-NaCIO/g-SS. The organic degradation performance of the microbial community in the presence of NaClO was impaired. The present study suggested that larger added amounts of NaClO caused an inhibition of organic degradation and cell lysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号