首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
热压参数对TA15合金流动应力及显微组织的影响   总被引:1,自引:0,他引:1  
在α+β两相区和β单相区对TA15合金进行恒应变速率等温压缩试验,实测得到了一组流动应力应变曲线,并对流动应力及压缩后的显微组织变化规律进行分析。结果表明:应变速率对TA15合金的流动应力有显著影响,变形温度对流动应力的影响程度与应变速率大小密切相关;较低温度快速压缩时易得到均匀细小等轴α相组织,慢速压缩时组织有一定的粗化。较佳等温压缩温度为900℃~980℃,应变速率可根据锻件成形、组织性能及生产率的需要在一定范围内选取,宜采用适当大的应变速率。  相似文献   

2.
温度和应变速率对Ti-1023合金等温压缩行为的影响   总被引:2,自引:0,他引:2  
在(α+β)两相区对Ti-1023合金进行等温压缩试验,实测高温流动应力曲线,讨论流动应力及显微组织随温度及应变速率的变化规律,实验结果表明,Ti-1023合金的流动应力对应变速率非常敏感;变形温度对流动应力的影响程度与应变速率大小有关,在ε=1.0s-1的较快速变形时,当温度由760℃提高到800℃时,流动应力值下降约40MPa,而在ε=1.6×10-4s-1的慢速变形时,流动应力值仅下降10MPa;显微组织观察结果表明,在相同温度下较快速变形时(ε=1.0s-1),所得显微组织比较细小、均匀,而慢速变形时(ε=1.6×10-4s-1),初生α相及组织比较粗大,亚β晶界也比较明显。因此,在保证锻件良好成形的前提下,Ti-1023合金在等温锻造时可采用适当大的应变速率。  相似文献   

3.
本文以Ti-6Al-7Nb合金为研究对象,采用Gleeble-3500热模拟压缩试验机进行不同温度和应变速率压缩试验。分析了Ti-6Al-7Nb合金在变形温度1023 K、1073 K、1123 K、1173 K,应变速率为0.005 s-1、0.05 s-1、0.5 s-1、5 s-1和10 s-1,最大变形量为60%下的高温变形行为及热加工特性。结果表明:变形温度与应变速率对Ti-6Al-7Nb合金的流动应力影响较大,其中应变速率是影响加工硬化过程的主要因素。Ti-6Al-7Nb合金在发生热塑性变形时后的物相主要有:初生α相、片层状α相、次生α相、片层状β相以及发生球化的初生α相等。Arrhenius本构方程模型适用于低温低应变速率和高温高应变速率形变条件的Ti-6Al-7Nb合金高温变形。利用MATLAB构建计算确定了合金最佳塑性变形区间为:应变速率0.0067 s-1-0.1353 s-1和温度1100-1173 K,在该区间有可能获取Ti-6Al-7Nb合金最佳的塑性变形工艺参数。  相似文献   

4.
对体育器材用Ti60合金铸件进行等温压缩试验,研究了该合金在960~1110℃和应变率0.001~10.0 s~(-1)下的材料特性。以双曲正弦模型为基础构建了合金的热变形本构方程,分析了该合金在高温下的塑性。对比观察实验前后合金的微观组织。结果表明,α+β相区和β相区的表观活化能分别为648、179 k J/mol,原因是α+β相区片状α组织的动态球化作用更剧烈;流动应力与变形温度和应变率有关;应变为0.6时,流动应力随应变率的增大而增大;在应变率一定时,变形温度越高,流动应力越小。  相似文献   

5.
在变形温度920~1040℃、应变速率0.001~70.0 s~(-1)条件下,采用Thermecmastor-Z热模拟试验机研究Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.35Si-0.85Nd合金在α+β两相区变形时的流动行为和塑性变形机制,得到优化的工艺参数范围。结果表明:该合金在α+β两相区变形时的流动应力对变形温度和应变速率均较敏感,变形温度较低时(920、950和980℃),流动应力曲线呈流动软化特征,变形温度较高时(1010和1040℃)呈稳态流动特征。失稳变形工艺参数范围为(920~930℃、0.2~70 s~(-1))和(1000~1040℃、1~70 s~(-1))范围,该区域易产生局部流动和机械失稳。综合加工图及微观组织观察结果,优化出的Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.35Si-0.85Nd合金α+β两相区变形时的工艺参数范围为(1000~1030℃、0.001~0.1 s~(-1))及(920~935℃、0.001~0.003 s~(-1)),其塑性变形机制为超塑性成形。  相似文献   

6.
在变形温度为920~1 100℃、应变速率为0.001~70.0s~(-1)条件下对Ti60合金进行了等温恒应变速率压缩试验,分析了合金的流动行为和塑性变形机制。结果表明,Ti60合金的流动应力对变形温度和应变速率均较敏感。在α+β两相区,随变形温度的升高,α相体积分数逐渐减少,片状组织球化率增高;在变形温度较低、应变速率较高时,易发生局部流动现象。在β单相区,应变速率较低时,β相易发生动态再结晶;应变速率较高时,易造成机械失稳。  相似文献   

7.
研究了TB8合金在不同变形条件下的超塑性及其显微组织。结果表明,变形温度为690~840℃、应变速率为1.0×10~(-4)~1.0×10~(-3)s~(-1)时,TB8钛合金均具有超塑性。750℃、1.0×10~(-4)s~(-1)拉伸时,合金塑性最佳,伸长率为524.9%。变形过程中,变形软化和加工硬化相互抵消,表现为传统的超塑性变形稳态流动特征。变形温度、应变速率和变形程度对合金的超塑性、显微组织均有明显影响。应变速率越低,等轴β相晶粒尺寸越大。拉伸温度升高,β相晶粒尺寸增大,α相颗粒逐渐被溶解,β相饱和化,但仍能保持一定的等轴度。随着变形程度增大,β相晶界和基体弥散析出的α相越多,细小、弥散分布的α相可以抑制晶粒的过分长大,使合金塑性得到改善。  相似文献   

8.
通过高温拉伸试验研究了Ti-6Al-4V合金的高温变形力学行为和超塑性,并对试样断口附近的组织进行了观察。结果表明,随着变形温度的升高或初始应变速率的降低,Ti-6Al-4V合金的流动应力明显减小;Ti-6Al-4V合金的最佳超塑性变形工艺参数为880℃/0.001s-1,最大延伸率为689%,峰值应力仅为30.03MPa;在超塑性拉伸过程中,试样变形区发生明显的动态再结晶,使片层状的α相晶粒破碎、细化和等轴化,促进超塑性的增加;随着变形温度的提高、变形量增大和变形时间的加长,再结晶α相发生了聚集长大,从而使显微组织明显粗化。对于双态组织的两相钛合金,最佳超塑性变形温度应低于或等于片层状α→β转变的终了温度。  相似文献   

9.
为了提高Ti-55531钛合金β相区锻造的损伤容限,通过Gleeble-3800热模拟试验机对Ti-55531合金在β相区进行了应变速率为0.001~1s-1,温度为860~950℃的等温压缩试验,获得了流动应力曲线。对Ti-55531合金在试验条件下热变形行为及流动应力变化进行了研究。结果表明,Ti-55531合金的流动应力曲线为稳态流动型,在相同的应变速率下,变形温度越低,流动应力越大;在相同的温度下,应变速率越快,流动应力越大。通过对试验数据拟合得到了0~0.7应变量的Ti-55531合金本构方程。方程的准确度高,平均误差为8.99%。在试验条件下,平均热激活能为209.204 kJ/mol,最小值为200.389 kJ/mol。  相似文献   

10.
采用Gleeble-3500热模拟试验机研究了Ti-22Al-24Nb合金在温度为900~1 110℃和应变速率为0.01~10s~(-1)条件下的高温流动应力及微观组织,分析了应变速率和变形温度对高温流动应力及热变形组织的影响。结果表明,变形温度和应变速率对Ti-22Al-24Nb合金的流动应力随变形温度的升高而降低,随应变速率的增加而升高。在α_2+B_2两相区,高应变速率下(6)ε≥1.0s~(-1))进行变形时,合金显微组织发生局部塑性流动和绝热剪切。在B_2单相区,低应变速率(6)ε≤0.1s~(-1))进行变形时,有明显的动态再结晶晶粒产生。高应变速率下,原始B_2相晶粒被明显拉长,晶界多呈不连续状态;低应变速率下变形时,随变形温度升高,合金易发生动态再结晶,当变形温度高于990℃时出现明显的动态再结晶特征;高应变速率下变形时,晶界模糊,随变形温度降低,晶界几乎全部消失,合金易发生局部塑性流动和绝热剪切。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

17.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

18.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

19.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

20.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号