首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
微波退火法低温制备多晶硅薄膜晶体管   总被引:1,自引:1,他引:0  
多晶硅薄膜晶体管以其独特的优点在液晶显示领域中有着重要位置。为了满足在普通玻璃衬底上制备多晶硅薄膜晶体管有源矩阵液晶显示器,低温制备(小于600℃)高质量多晶硅薄膜已成为研究热点,文章利用微波加热技术,采用非晶硅薄膜微波退火固相晶化法低温制备出多晶硅薄膜晶体管,研究了微波退火工艺对多晶硅薄膜晶体管电学性能的影响。  相似文献   

2.
激光晶化制备多晶硅薄膜技术   总被引:1,自引:0,他引:1  
激光晶化是一种制作晶硅薄膜器件(如薄膜晶体管、太阳能电池)很有效的技术.展望了低温多晶硅薄膜的应用前景,详细介绍了近几年激光晶化制备多晶硅薄膜技术的研究成果,并就激光对非晶硅作用的原理作了简单讨论.  相似文献   

3.
金属Ni诱导非晶硅薄膜晶化研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用金属镍诱导晶化非晶硅薄膜的方法制备多晶硅薄膜,研究了不同退火温度和退火时间对晶化效果的影响,使用SEM、EDS和XRD分析了薄膜的晶化效果。实验发现,非晶硅薄膜在460℃以下退火不能晶化,在460℃退火30min已全部晶化;随着退火温度升高或退火时间延长,晶化效果变好;退火2h之后晶体生长近乎饱和。  相似文献   

4.
为实现多晶硅薄膜晶体管有源矩阵液晶显示器的实用化与产业化 ,低温 (<6 0 0°C)、快速制备高质量多晶硅薄膜已成为研究热点。文中将微波加热技术应用于金属诱导 a- Si薄膜横向晶化工艺中 ,成功实现了低温快速制备多晶硅薄膜。通过薄膜电阻率的测试 ,分析了多晶硅薄膜的电学特性。  相似文献   

5.
金属诱导横向晶化技术(MILC)由于具有晶化温度低、晶化颗粒大等优点而获得了快速发展。阐述了金属诱导横向晶化非晶硅薄膜的晶化机理、晶化效果及影响晶化效果的主要参数,并介绍了基于多种辅助措施,如离子掺杂、电磁场辅助、微波退火、激光退火、氮硅化合物覆盖法和焦耳热升温法等方法,以优化金属诱导横向晶化非晶硅薄膜。辅助措施均有利于增强晶化效果,更易获得大面积无孪晶多晶硅薄膜,并具有较高的载流子迁移率。最后提出采用微纳金属阵列结构调控晶化能量,实现低温、高速、大晶粒直径的多晶硅薄膜制备新方法。  相似文献   

6.
快速光热退火法制备多晶硅薄膜的研究   总被引:5,自引:1,他引:4  
为了制备应用于太阳电池的优质多晶硅薄膜,研究了非晶硅薄膜的快速光热退火技术。先利用 PECVD 设备沉积非晶硅薄膜,然后放入快速光热退火炉中进行退火。退火前后的薄膜利用 X 射线衍射仪(XRD)和扫描电子显微镜(SEM)测试其晶体结构及表面形貌,用电导率设备测试其暗电导率。研究表明退火温度、退火时间对非晶硅薄膜的晶化都有很大的影响,光热退火前先用常规高温炉预热有助于增大多晶硅薄膜的晶粒尺寸和暗电导率。  相似文献   

7.
多晶硅薄膜在微电子和能源科学领域有着广泛的应用。本文介绍了利用铝诱导晶化非晶硅制备多晶硅薄膜的方法,叙述了铝诱导晶化法制备多晶硅薄膜的一般过程,着重讨论了铝诱导晶化非晶硅的机理和在制备过程中各种参数对多晶硅薄膜质量的影响。  相似文献   

8.
多晶硅薄膜在微电子和能源科学领域有着广泛的应用.本文介绍了利用铝诱导晶化非晶硅制备多晶硅薄膜的方法,叙述了铝诱导晶化法制备多晶硅薄膜的一般过程,着重讨论了铝诱导晶化非晶硅的机理和在制备过程中各种参数对多晶硅薄膜质量的影响.  相似文献   

9.
王强  花国然  顾江 《半导体光电》2014,35(2):282-285
应用不同频率的YAG激光分别对单晶硅及多晶硅衬底上的非晶硅薄膜进行了退火处理。晶化后的非晶硅薄膜的物相结构和表面形貌用XRD和AFM进行分析。XRD测试结果表明:随着激光频率的增加,两种衬底上的非晶硅薄膜晶化晶粒尺寸均出现了先增加后降低的现象。所有非晶硅样品的衍射峰位与衬底一致,说明非晶硅薄膜的晶粒生长是外延生长。从多晶硅衬底样品的XRD可以看出,随着激光频率的增加,激光首先融化衬底表面,然后衬底表层与非晶硅薄膜一起晶化。非晶硅薄膜最佳晶化激光频率分别为:多晶硅衬底20Hz,单晶硅衬底10Hz。  相似文献   

10.
多晶硅薄膜在微电子和能源科学领域有着广泛的应用.本文介绍了利用铝诱导晶化非晶硅制备多晶硅薄膜的方法,叙述了铝诱导晶化法制备多晶硅薄膜的一般过程,着重讨论了铝诱导晶化非晶硅的机理和在制备过程中各种参数对多晶硅薄膜质量的影响.  相似文献   

11.
多晶硅TFT及其在AMLCD中的应用   总被引:3,自引:0,他引:3  
多晶硅薄膜晶体管目前是大面积微电子学领域中最热门的研究课题之一,它以其独特的优点,在液晶显示领域中失常着重要角色,简要介绍了多晶硅薄膜晶体管的结构、器件特性以及在有源矩阵液晶显示器中的应用。  相似文献   

12.
薄膜晶体管研究进展   总被引:3,自引:0,他引:3  
薄膜晶体管是液晶显示器的关键器件,对显示器件的工作性能具有十分重要的作用。本文论述了薄膜晶体管的发展历史,描述了薄膜晶体管的工作原理,分析了非晶硅薄膜晶体管、多晶硅薄膜晶体管、有机薄膜晶体管、ZnO活性层薄膜晶体管的性能结构特点与最新进展,并展望了薄膜晶体管的应用。  相似文献   

13.
The preparation,current status and trends are investigated for silicon thin film solar cells.The advantages and disadvantages of amorphous silicon thin film,polycrystalline silicon thin film and mono-crystalline silicon thin film cells are compared.The future development trends are pointed out.It is found that polycrystalline silicon thin film solar cells will be more promising for application with great potential.  相似文献   

14.
以Si(100)为衬底,采用磁控溅射和射频等离子体增强化学气相沉积系统制备了Si(100)/Al膜/非晶Si膜结构的样品。对该样品进行Al诱导真空退火以制备多晶硅薄膜,采用X射线衍射仪(XRD)和AFM分析薄膜微结构及表面形貌。实验结果表明,在经过500℃、550℃Al诱导退火后,形成了择优取向为〈111〉晶向的多晶硅薄膜。AFM给出了550℃退火后薄膜表面形貌,为100~200nm大小的圆丘状硅晶粒,密集排列在薄膜表面;并对Al诱导真空退火晶化的机理进行了分析。  相似文献   

15.
非晶硅薄膜光谱响应研究   总被引:1,自引:0,他引:1  
利用Matlab软件计算了基于本征吸收的非晶硅薄膜的光谱响应,仿真出由多个不同带隙的薄膜组成的非晶硅薄膜的光谱响应,仿真了薄膜厚度、光学禁带宽度参数对非晶硅薄膜光谱响应的影响,设计出一种渐变带隙的非晶硅薄膜。结果表明渐变带隙的非晶硅薄膜能有效拓宽薄膜的光谱响应范围,也能提高光谱中对各个波长的响应值。  相似文献   

16.
VHF-PECVD制备微晶硅材料的均匀性及其结构特性的分析   总被引:1,自引:1,他引:0  
采用VHF-PECVD技术在多功能系统(cluster tool)中制备了系列硅薄膜,研究薄膜的均匀性及电学特性和结构特性。结果表明:气压和功率的合理匹配对薄膜的均匀性有很大的影响;材料的喇曼测试和电学测试结果表明微晶硅薄膜存在着纵向的结构不均匀,在将材料应用于器件上时,必须要考虑优化合适的工艺条件;硅烷浓度大,相应制备薄膜的晶化程度减弱,即薄膜中非晶成分增多。  相似文献   

17.
非晶硅薄膜(a-Si)是目前重要的光敏材料,在很多领域得到广泛应用。直流磁控溅射具有工艺简单.沉积温度低等优点,是制备薄膜的一种重要技术。采用直流磁控溅射工艺在玻璃基板上沉积薄膜,并对样品进行了退火处理。研究了沉积速率与溅射功率的关系。结果表明薄膜的沉积速率与溅射功率近似有线性关系。利用X射线衍射(XRD)对薄膜进行了分析鉴定,结果表明溅射的薄膜是非晶硅薄膜。利用扫描电子显微镜(SEM)对非晶硅薄膜的表面形貌进行了观察和分析,与X射线衍射测试的结果一致。所以.利用直流磁控溅射工艺能在常温下能快速制备出良好的非晶硅薄膜。  相似文献   

18.
简要说明了非晶硅、多晶硅和有机半导体用作薄膜晶体管沟道层的不足,从电学性质、光学性质和制备温度等几方面介绍了氧化物薄膜晶体管在有源阵列驱动显示技术中的优势,并介绍了氧化物沟道层制备工艺的优化和掺杂方法.最后,展望了氧化物半导体薄膜晶体管应用前景.  相似文献   

19.
闫金良 《半导体光电》2004,25(5):384-387
研究了不同厚度ITO膜的大尺寸超薄导电玻璃的翘曲度,ITO膜形成期间基片温度对ITO膜层晶体化程度的影响及不同基片温度下形成的ITO膜层在不同的退火条件下的退火前、后的电阻率和膜压应力.实验发现,ITO膜层的很高的压应力是导致导电膜玻璃翘曲的直接原因;采用室温沉积非晶ITO膜,然后经高温热退火可获得低膜压应力多晶相ITO膜.基于实验结论,提出了一种适合批量生产的低翘曲度ITO膜导电玻璃的制备工艺.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号