首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several acrylic copolymers containing, at random, sequences of poly(ethyl acrylate) and poly(N-(2-hydroxyethyl)acrylamide) were obtained from ethyl acrylate as the only monomer starting material in a chain polymerization process, catalyzed by Candida antarctica lipase B. In the presence of ethanolamine, the enzyme not only catalyzes the chain polymerization of ethyl acrylate but also aminolysis the pendant ester groups. The products, characterized by FTIR, 1H and 13C NMR and UV-MALDI-TOF-MS, show low molecular weight and high monodispersity. The activity showed by C. antarctica lipase B in the polymerization reaction is a new example of enzyme promiscuity.  相似文献   

2.
This paper introduces the new synthetic methodology of polyolefin-based block and graft copolymers with polar segments [e.g., polystyrene and poly(meth)acrylates]. Various brominated polyolefins were prepared by bromination of polyolefins with N-bromosuccinimide. The resulting brominated polyolefins were able to initiate the controlled radical polymerization of polar monomers, such as methyl methacrylate, ethyl acrylate, t-butyl acrylate, styrene and 2-(dimethylamino)ethyl acrylate, using a CuBr/N,N,N′,N″,N″-pentamethyldiethylenetriamine catalyst system, leading to a variety of polyolefin-based copolymers with a different content of the corresponding polar segment. Because of the accessible synthesis of polyolefin macroinitiators, this synthetic methodology is expected to result in the preparation of a wide range of polyolefin-based block and graft copolymers.  相似文献   

3.
Zhongyu Li 《Polymer》2006,47(16):5791-5798
A novel well-defined amphiphilic graft copolymer of poly(ethylene oxide) as main chain and poly(methyl acrylate) as graft chains is successfully prepared by combination of anionic copolymerization with atom transfer radical polymerization (ATRP). The glycidol is protected by ethyl vinyl ether first, then obtained 2,3-epoxypropyl-1-ethoxyethyl ether (EPEE) is copolymerized with EO by initiation of mixture of diphenylmethyl potassium and triethylene glycol to give the well-defined poly(EO-co-EPEE), the latter is deprotected in the acidic conditions, then the recovered copolymer [(poly(EO-co-Gly)] with multi-pending hydroxyls is esterified with 2-bromoisobutyryl bromide to produce the ATRP macroinitiator with multi-pending activated bromides [poly(EO-co-Gly)(ATRP)] to initiate the polymerization of methyl acrylate (MA). The object products and intermediates are characterized by NMR, MALDI-TOF-MS, FT-IR, and SEC in detail. In solution polymerization, the molecular weight distribution of the graft copolymers is rather narrow (Mw/Mn < 1.2), and the linear dependence of Ln [M0]/[M] on time demonstrates that the MA polymerization is well controlled.  相似文献   

4.
The present investigation pertains to the structure–property relationships of highly structured graft copolymers. The specific model graft copolymers are based on an elastomeric backbone, i.e., poly(ethyl acrylate), and monodisperse thermoplastic grafts, i.e., polystyrene. The synthesis of these graft copolymers is based on the free-radical polymerization of ethyl acrylate and an anionically polymerized polystyrene macromonomer. It is clearly demonstrated that grafts significantly enhance tensile properties. The level of improvement is directly related to the graft level, i.e., number of grafts/chain, and graft molecular weight. In addition, blending these graft copolymers into their respective homopolymer mixture results in a mechanical performance strikingly dependent on the molecular characteristics of the graft copolymer. For example, tensile strength is maximized at a level between one and two grafts per chain. This result parallels observations noted in blend compatibilization using diblock and triblock copolymers. It is also demonstrated that using mutually grafted copolymers produces an interesting variety of compatibilized ternary (or higher) component blends. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
A novel vinyl ether-type RAFT agent, benzyl 2-(vinyloxy)ethyl carbonotrithioate (BVCT) was synthesized for various block copolymers via the combination of living cationic polymerization of vinyl ethers and reversible addition−fragmentation chain transfer (RAFT) polymerization. The novel BVCT–trifluoroacetic acid adduct play an important role to produce well-defined block copolymers, which is both as a cationogen under EtAlCl2 initiation system in the presence of ethyl acetate for living cationic polymerization and a RAFT agent for blocks by RAFT polymerization. The resulting polymer, poly(vinyl ether)s, by living cationic polymerization had a high number average α-end functionality (≥0.9) as determined by both 1H NMR and MALDI-TOF-MS spectrometry. In addition, this poly(vinyl ether)s worked well as a macromolecular chain transfer agent for RAFT polymerization. The RAFT polymerization of radically polymerizable monomers was conducted in toluene using 2,2′-azobis(isobutyronitrile) at 70 °C. For example, a double thermoresponsive block copolymer (MOVE61-b-NIPAM150) consisting of 2-methoxyethyl vinyl ether (MOVE) and N-isopropylacrylamide (NIPAM) was prepared via the combination of living cationic polymerization and RAFT polymerization. The block copolymer reversibly formed and deformed micellar assemblies above the phase separation temperature (Tps) of poly(NIPAM) block in water. This BVCT is not only functioned as an initiator, but also acted as a monomer. When BVCT was copolymerized with MOVE by living cationic polymerization, followed by graft copolymerization with NIPAM via RAFT polymerization, well-defined graft copolymers (MOVEn-co-BVCTm)-g-NIPAMx (n = 62–73, m = 1–9, x = 19–214) were successfully obtained. However, no micelle formed in water above Tps of poly(NIPAM) graft chain unlike the case of block copolymers.  相似文献   

6.
Polyaniline (PANI) N‐grafted with poly(ethyl acrylate) (PEA) was synthesized by the grafting of bromo‐terminated poly (ethyl acrylate) (PEA‐Br) onto the leucoemeraldine form of PANI. PEA‐Br was synthesized by the atom transfer radical polymerization of ethyl acrylate in the presence of methyl‐2‐bromopropionate and copper(I) chloride/bipyridine as the initiator and catalyst systems, respectively. The leucoemeraldine form of PANI was deprotonated by butyl lithium and then reacted with PEA‐Br to prepare PEA‐g‐PANI graft copolymers containing different amounts of PEA via an N‐grafting reaction. The graft copolymers were characterized by Fourier transform infrared spectroscopy, elemental analysis, and thermogravimetric analysis. Solubility testing showed that the solubility of PANI in chloroform was increased by the grafting of PEA onto PANI. The morphology of the PEA‐g‐PANI graft copolymer films was observed by scanning electron microscopy to be homogeneous. The electrical conductivity of the graft copolymers was measured by the four‐probe method. The results show that the conductivity of the PANI decreased significantly with increasing grafting density of PEA onto the PANI backbone up to 7 wt % and then remained almost constant with further increases in the grafting percentage of PEA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
To diversify edible oil thermoresponsive polymer composites, polymeric linoleic acid peroxide (PLina) and polymeric linolenic acid peroxide (PLinl) were obtained by the autoxidation of linoleic acid (Lina) and linolenic acid (Linl), respectively. The autoxidation of Lina and Linl under air at room temperature rendered waxy soluble polymeric peroxide, having a soluble fraction in chloroform of more than 91 wt% and containing up to 1.0 wt% of peroxide. The soluble polymeric oil macro-peroxide was used to initiate the free radical polymerization of N-isopropylacrylamide, NIPAM, resulting in PLina-g-PNIPAM and PLinl-g-PNIPAM graft copolymers, respectively. The PNIPAM content of the graft copolymers was calculated using the elemental nitrogen analysis of graft copolymers. Thermal analysis, FTIR, 1H NMR, and SEM techniques were used in the characterization of the products. The hydrophobic effect of the fatty acid macro peroxides on the thermal response rate of the graft copolymers was investigated by means of swelling-deswelling behaviors in response to temperature change. They have a thermoresponsive character and exhibit a volume phase transition at approximately 27–30 °C, which is 1–4 °C lower than that of pure PNIPAM. A plastizer effect of PLina and PLinl in graft copolymers was observed, indicating a lower glass transition temperature than that of pure PNIPAM.  相似文献   

8.
Amphiphilic ethyl cellulose (EC)-g-poly(acrylic acid) (PAA) copolymers were synthesized by atom transfer radical polymerization (ATRP). Firstly, ethyl cellulose macro-initiators with the degree of the 2-bromoisobutyryl substitution of 0.04 and 0.25 synthesized by the esterification of the hydroxyl groups remained in EC macromolecular chains and the 2-bromoisobutyryl bromides. Secondly, tert-butyl acrylate was polymerized by ATRP with the ethyl cellulose macro-initiator and EC-g-PtBA copolymers were prepared. Finally, the EC-g-PAA copolymers were prepared by hydrolyzing tert-butyl group of the EC-g-PtBA copolymers. The grafting copolymers were characterized by means of GPC, 1H NMR and FTIR spectroscopies. The molecular weight of graft copolymers increased during the polymerization and the polydispersity was low. A kinetic study showed that the polymerization was first-order. Meanwhile, EC-g-PAA copolymers were self-assembled to micelles or particles with diameters of 5 nm and 100 nm in water (pH = 10) when the concentration was 1.0 mg/ml.  相似文献   

9.
Thermoplastic elastomers based on well-defined 10- and 20 arm star-like block copolymers containing middle soft poly(n-butyl acrylate) (PBA) block and outer hard poly(α-methylene-γ-butyrolactone) (PMBL) block were synthesized by atom transfer radical polymerization (ATRP). Phase separated cylindrical or lamellar morphologies, depending on the copolymers composition and the annealing temperature of the films, were observed by atomic force microcopy and small-angle X-ray scattering. The mechanical and thermal properties of the copolymers were thoroughly characterized. The prepared copolymers retained their phase separated morphology even at temperatures exceeding 300 °C. Both tensile strength and elongation values for the star-like copolymers were considerably higher than for linear copolymers with similar composition.  相似文献   

10.
Various random copolymers of poly(poly(ethylene glycol) methacrylate-co-1H,1H,2H,2H-perfluorooctylmethacrylate) (p(PEGMA-co-FOMA)) with different poly(ethylene glycol) (PEG) chain length (Mn = 300, 475, and 1100) and different FOMA content have been synthesized in supercritical carbon dioxide (scCO2) via free-radical polymerization. The copolymers containing above 50 wt% FOMA could be used as a stabilizer for the polymerization of methyl methacrylate (MMA) in scCO2. For PEGMA (300) and PEGMA (475) copolymers, the copolymeric stabilizer with 67–69 wt% FOMA content was shown to be optimal to produce micrometer-size spherical PMMA powder. The size of pendant PEG group and the composition of copolymer as well as the concentration of MMA affected on the size of PMMA particles and the stability of PMMA latexes in CO2.  相似文献   

11.
Internal plasticization of poly(vinyl chloride) (PVC) was achieved in one-step using copper-mediated atom transfer radical polymerization to graft different ratios of random n-butyl acrylate and 2–2-(2-ethoxyethoxy)ethyl acrylate copolymers from defect sites on the PVC chain. Five graft polymers were made with different ratios of poly(butyl acrylate) (PBA) and poly(2–2-(2-ethoxyethoxy)ethyl acrylate) (P2EEA); the glass transition temperatures (Tg) of functionalized PVC polymers range from − 25 to − 50°C. Single Tg values were observed for all polymers, indicating good compatibility between PVC and grafted chains, with no evidence of microphase separation. Plasticization efficiency is higher for polyether P2EEA moieties compared with PBA components. The resultant PVC graft copolymers are thermally more stable compared to unmodified PVC. Increasing the reaction scale from 2 to 14 g produces consistent and reproducible results, suggesting this method could be applicable on an industrial scale.  相似文献   

12.
Design, synthesis, morphology, mechanical properties and in vitro oxidative stability of new class of surface modified thermoplastic elastomers containing mixed soft rubbery poly(n-butyl acrylate-b-dimethylsiloxane-b-n-butyl acrylate) (PnBA-b-PDMS-b-PnBA) block and glassy poly methyl methacrylate (PMMA) end blocks have been reported. Thus well-defined pentablock copolymers such as PMMA-b-PnBA-b-PDMS-b-PnBA-b-PMMA were synthesized by Atom Transfer Radical Polymerization (ATRP). Moderate amount of PDMS (8–15 wt%) in the copolymers significantly enhances the oxidative stability of the surface and contact angle of water in compare to neat PMMA-b-PnBA-b-PMMA copolymer. The phase morphology of such type of copolymers was studied in detailed which suggests that the mixed soft PnBA-b-PDMS-b-PnBA part forms single phase and the degree of phase separation between PnBA-b-PDMS-b-PnBA and PMMA in PMMA-b-PnBA-b-PDMS-b-PnBA-b-PMMA copolymer is higher than the degree of phase separation between PnBA and PMMA in PnBA-b-PDMS-b-PnBA copolymer. This approach of surface modification was extended to synthesize PMMA-b-PLMA-b-PDMS-b-PLMA-b-PMMA (PLMA = polylauryl methacrylate) block copolymers with improved surface properties.  相似文献   

13.
Reversible-addition fragmentation chain transfer (RAFT) polymerization enabled the synthesis of novel, stimuli-responsive, AB and ABA block copolymers. The B block contained oligo(ethylene glycol) methyl ether methacrylate (OEG) and was permanently hydrophilic in the conditions examined. The A block consisted of diethylene glycol methyl ether methacrylate (DEG) and [2-(methacryloyloxy)ethyl]trimethylammonium chloride (TMA). The A block displayed both salt- and temperature-response with lower critical solution temperatures (LCSTs) dependent on the molar content of TMA and the presence of salt. Higher TMA content in the AB diblock copolymers increased the critical micelle temperatures (CMT) in HPLC-grade water due to an increased hydrophilicity of the A block. Upon addition of 0.9 wt% NaCl, the CMTs of poly(OEG-b-DEG95TMA5) decreased from 50 °C to 36 °C due to screening of electrostatic repulsion between the TMA units. ABA triblock copolymers displayed excellent hydrogel properties with salt- and temperature-dependent gel points. TMA incorporation in the A block increased the gel points for all triblock copolymers, and salt-response increased with higher TMA composition in the A block. For example, poly(DEG98TMA2-b-OEG-b-DEG98TMA2) formed a hydrogel at 40 °C in HPLC-grade water and 26 °C in 0.9 wt% NaCl aqueous solution. These salt- and temperature-responsive AB diblock and ABA triblock copolymers find applications as drug delivery vehicles, adhesives, and hydrogels.  相似文献   

14.
Dong Yang  Yongjun Li  Sen Zhang 《Polymer》2010,51(8):1752-1760
A series of well-defined binary hydrophilic-fluorophilic diblock copolymers were synthesized by successive atom transfer radical polymerization (ATRP) of methoxylmethyl acrylate (MOMA) and 4-(4′-p-tolyloxyperfluorocyclobutoxy)benzyl methacrylate (TPFCBBMA) followed by the acidic selective hydrolysis of the hydrophobic poly(methoxymethyl acrylate) (PMOMA) segment into the hydrophilic poly(acrylic acid) (PAA) segment. ATRP of MOMA was initiated by 2-MBP at 50 °C in bulk to give two different PMOMA homopolymers with narrow molecular weight distributions (Mw/Mn ≤ 1.15). PMOMA-b-PTPFCBBMA well-defined diblock copolymers were synthesized by ATRP of TPFCBBMA at 90 °C in anisole using Br-end-functionalized PMOMA homopolymer as macroinitiator and CuBr/PMDETA as catalytic system. The final PAA-b-PTPFCBBMA amphiphilic diblock copolymers were obtained via the selective hydrolysis of PMOMA block in dilute HCl without affecting PTPFCBBMA block. The critical micelle concentrations (cmc) of PAA-b-PTPFCBBMA amphiphilic copolymers in aqueous media were determined by fluorescence spectroscopy using pyrene as probe and these diblock copolymers showed different micellar morphologies with the changing of the composition.  相似文献   

15.
Experimental cloud-point data to 210 ‡C and 2,200 bar are presented for binary and ternary mixtures of poly(methyl acrylate)-CO2-methy acrylate and poly(ethyl acrylate)-CO2, propylene, and 1-butene-ethyl aerylate systems. The accuracy of the experimental apparatus was tested by comparing the measured pressure-temperature phase behavior data of the poly(ethyl acrylate)-CO2 system obtained in this study with those of Rindfleisch et al. [1995]. The phase behaviors for the system poly(methyl acrylate)-CO2-methyl acrylate were measured in changes of pressure-temperature slope, and with cosolvent concentrations of 0, 5.0, 13.7, 25.3, and 43.3 wt%, respectively. With 48.3 wt% methyl acrylate to the poly(methyl acrylate)-CO2 solution significantly changes, the phase behavior curve takes on the appearance of a typical lower critical solution temperature (LCST) boundary. The impact of ethyl acrylate on the cloud-point for the poly(ethyl acrylate)-CO2 system shows the change of slope of the phase behavior curves from negative to positive with ethyl acrylate concentration of 0, 8.2, and 25.0 wt%. The cloud-point behavior for the poly(ethyl acrylate)-CO2-39.5 wt% ethyl acrylate system shows an LCST curve. The solubility curve to ∼150 ‡C and 1,650 bar for poly(ethyl acrylate)-propylene-ethyl acrylate system shows the change of pressure-temperature diagram and with ethyl acrylate concentration of 0, 7.2 and 21.0 wt%. Also, when 41.1 wt% ethyl acrylate was added to the poly(ethyl acrylate)-propylene solution, the phase behavior curve showed the LCST region. The high pressure phase behavior of poly(ethyl acrylate)-1-butene-0, 3.1, 8.1, 18.5 and 30.7 wt% ethyl acrylate system presented the change of pressure-temperature curve from the UCST region to U-LCST region as the ethyl acrylate concentration increased.  相似文献   

16.
The copolymers of poly(α-methyl styrene–methyl acrylate) (PMSMA) and poly(α-methyl styrene–ethyl acrylate) (PMSEA) were synthesized by emulsion polymerization. The compatibility of these copolymers with poly(vinyl chloride) (PVC) was estimated by the solubility parameter method and scanning electron microscopy (SEM). The rheological behavior was investigated by a flow tester. The mechanical properties, rheological behavior, and morphology of these blends show that these copolymers can be used as a processing aid for PVC. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
Well-defined statistical, gradient and block copolymers consisting of isobornyl acrylate (IBA) and n-butyl acrylate (nBA) were synthesized via atom transfer radical polymerization (ATRP). To investigate structure-property correlation, copolymers were prepared with systematically varied molecular weights and compositions. Thermomechanical properties of synthesized materials were analyzed via differential scanning calorimetry (DSC), dynamic mechanical analyses (DMA) and small-angle X-ray scattering (SAXS). Glass transition temperature (Tg) of the resulting statistical poly(isobornyl acrylate-co-n-butyl acrylate) (P(IBA-co-nBA)) copolymers was tuned by changing the monomer feed. This way, it was possible to generate materials which can mimic thermal behavior of several homopolymers, such as poly(t-butyl acrylate) (PtBA), poly(methyl acrylate) (PMA), poly(ethyl acrylate) (PEA) and poly(n-propyl acrylate) (PPA). Although statistical copolymers had the same thermal properties as their homopolymer equivalents, DMA measurements revealed that they are much softer materials. While statistical copolymers showed a single Tg, block copolymers showed two Tgs and DSC thermogram for the gradient copolymer indicated a single, but very broad, glass transition. The mechanical properties of block and gradient copolymers were compared to the statistical copolymers with the same IBA/nBA composition.  相似文献   

18.
Comb-shaped graft copolymers with poly(methyl acrylate) as a handle were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and ring-opening polymerization (ROP) techniques in three steps. First, copolymers of poly(styrene-co-chloromethyl styrene), poly(St-co-CMS), were prepared by RAFT copolymerization of St and CMS using 1-(ethoxycarbonyl)prop-1-yl dithiobenzoate (EPDTB) as RAFT agent. Second, the polymerization of MA using poly(St-co-CMS)-SC(S)Ph as macromolecular chain transfer agent produced block copolymer poly(St-co-CMS)-b-PMA. Third, cationic ring-opening polymerization of THF was performed using poly(St-co-CMS)-b-PMA/AgClO4 as initiating system to produce comb-shaped copolymers. The structures of the poly(St-co-CMS), poly(St-co-CMS)-b-PMA and final comb-shaped copolymers were characterized by 1H NMR spectroscopy and gel permeation chromatography (GPC).  相似文献   

19.
Bifunctional polystyrene macroinitiators, having various molecular weights, were prepared by atom transfer radical polymerization (ATRP), initiated with bifunctional initiator 1,3-bis{1-methyl-1[(2,2,2-trichloroethoxy) carbonylamino]ethyl}benzene in conjunction with CuCl catalyst and polyamine ligands. These macroinitiators were subsequently used for ATRP of tert-butyl acrylate (t-BuA), giving BAB triblocks poly[(t-BuA)-b-(Sty)-b-(t-BuA)] as precursors of amphiphilic copolymers. Both the polymerization steps proceeded as controlled processes with linear semi-logarithmic conversion plots and lengths of the blocks following theoretical predictions. Hydrolysis of outer poly(t-BuA) blocks led to triblock copolymers with the central polystyrene block and outer blocks of poly(acrylic acid), the molecular weights of which ranged from ca. 5 × 103 to almost 1 × 105 Da.  相似文献   

20.
Chenguang Yao  Guisheng Yang 《Polymer》2010,51(6):1516-11075
A new type of poly(ether-ester) based on poly(trimethylene terephthalate) as rigid segments and poly(ethylene oxide terephthalate) as soft segments was synthesized and its crystallization behavior and morphology were investigated. Differential Scanning Calorimetry revealed that the copolymer containing 57 wt% soft segments presented a low glass transition temperature (−46.4 °C) and a high melting temperature (201.8 °C), suggesting that it had the typical characteristic of thermoplastic elastomer. With increasing soft segment content from 35 to 57 wt%, the crystallization morphology transformed from banded spherulites to compact seaweed morphology at a certain film thickness, which was due to the change of surface tension and diffusivity caused by increasing the soft segment content. Moreover, with the decrease of film thickness from 15 to 2 μm, the crystallization morphology of the copolymer (57 wt% soft segment) changed from wheatear-like, compact seaweed to dendritic. Scanning Electron Microscopy revealed that some flower-like crystals presenting in the bulk, which had been surprisingly found in the poly(ether-ester) segmented block copolymers for the first time. Possible mechanism was discussed in the text.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号