首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study aimed at investigating the role of ultra fine sand (UFS) in enhancing the mechanical and acoustic properties of cementitious pastes. The microstructural origin of these properties was also identified and compared to the conventional materials. The maximum particle size of the UFS used was 100 μm (100% passing) while 50% of the UFS had less than 20 μm in diameter. Ordinary Portland cement (OPC) was partially substituted by UFS at 1%, 2%, 3%, 4%, 5%, 7.5% and 10% by weight of binder. The blended compounds were prepared using the standard water of consistency. Test samples with dimension of 20 × 20 × 20 mm and 40 × 40 × 160 mm were cast for compression and bending strengths tests, respectively. Circular samples with diameters of about 100 and 29 mm and average thickness of about 30 mm were used for sound absorption tests. All samples were kept in molds for 24 h, and then de-molded and allowed to cure in water for 28 days. The specimens were dried at a temperature of 105 °C for 24 h in an oven before testing. It was found that as the loading of UFS increases both the compressive and bending strength increase up to about 5% UFS loading, then a decrease in these properties was observed. This can be attributed to the pozzolanic effect of UFS resulting in enhancing the chemical reaction between free lime in cement and silica producing more hydration products that makes the paste more homogeneous and dense. In addition, the dispersed UFS has improved the filling effect allowing denser packing of the paste. These dense microstructural features were captured by scanning electron microscope (SEM) examination of the 5% UFS modified compound. The results also showed that, the sound absorption and noise reduction coefficient (NRC) for modified cement paste decreases with the increase of UFS up to 5% and this may be due to the decrease in porosity. However, the NRC began to increase at UFS loadings of 7.5% and 10% due to the increase in the porosity of the compounds.  相似文献   

2.
The Cerchar abrasivity index (CAI) obtained from Cerchar abrasivity tests is an indicator of abrasiveness of rocks, and widely used for the estimation of bit/cutting tool life and wear rates in various mining and tunnelling applications. The effect of scratch length on CAI is investigated in this study by use of West apparatus and 6 different steel styluses with Rockwell Hardness of HRC40-42, HRC44-46, HRC48-50, HRC50-52, HRC54-56, and HRC58-60. The tests are carried out on 15 different rock samples (sedimentary, igneous, and metamorphic) on which rough and sawn cut surfaces with scratch lengths varying between 2 mm and 20 mm with an increment of 2 mm, thus resulting in total 27,000 scratches. It is observed that the CAI values between 85% and 93% are reached at the sliding distance of 10 mm while about the final CAI value of 99% is reached at 15 mm. It is also observed that the CAI values on rough surfaces are about 18% higher than those on sawn cut surfaces. Besides, it is determined that the most suitable surface condition in CAI test is sawn cut surfaces according to the coefficient of variation of CAI values in measurement depending on the stylus hardness and the measurement surface condition.  相似文献   

3.
This paper reports a novel fire-extinguishing agent: an aqueous dispersion of fine ferrocene particles. In this study, the ferrocene–water–surfactant dispersions were prepared to optimize the gas-phase concentration of ferrocene, and their ability to extinguish heptane fires was examined. The fire-extinguishing efficiency was characterized by three parameters: the ferrocene concentration in the dispersion (0–175 ppm), the surfactant used, and the ferrocene particle size (d50=10.4, 11.4, 21.5, and 68.8 μm). The results indicated that (1) the ferrocene (d50=10.4 mm)–water–surfynol 465 dispersion is the most stable among the dispersions tested, (2) the ferrocene–water–surfynol 465 dispersions have an optimal value of ferrocene concentration regarding the extinguishing time, and (3) in the ferrocene particle size range of 10.4–21.5 μm, the minimum extinguishing time of the ferrocene–water–surfynol 465 dispersions is remarkably shorter (1.2 s) than those observed when using a conventional wet chemical agent (45 wt% aqueous solution of potassium carbonate, 12.9 s).  相似文献   

4.
The conversion of large amount of demolished waste into alternate source of building material will contribute not only as a solution to growing waste problem of waste disposal, but also it will conserve the natural resources of other building material and thereby reduce the cost of construction. The present work makes an effort to safe and economic use of recycled mortar as a supplementary material. Conventional and recycled brick prisms were casted with varying percentage of demolished waste added (0%, 10%, 20%, 30%) replacing cement and tested under compression testing machine. As the replacement is increasing, the strength is decreasing. A 1:4 scale single storey brick model was fabricated on shake table for dynamic testing using pure friction isolation system (friction material for coarse dry sand, μ = 0.36). Pure friction isolation technique can be adopted economically in developing countries where low-rise building prevails due to their low cost. The superstructure was separated from the foundation at plinth level, so as to permit sliding of superstructure during severe earthquake. The observed values of acceleration and displacement responses compare fairly with the analytical values of the analytical model except in displacement beyond 2.4 kN. It also concluded that 20% replacement of cement by demolished waste could be safely adopted without endangering the safety of the masonry structures under seismic load.To have an idea that how much energy is dissipated through this isolation, the same model with fixed base was tested and results were compared with the isolated free sliding model and it has been observed that more than 70% energy is dissipated through this pure friction isolation technique. In case of base isolation, no visible cracks were observed up to a table force of 4.25 kN (1300 rpm), whereas for fixed base failure started at 800 rpm and complete bond failure was observed at 1300 rpm.  相似文献   

5.
The grouting results for a tunnel at a depth of 450 m in crystalline rock at Äspö HRL were studied. The aims were to investigate whether the methodology used resulted in a successful grouting design and producing a sufficiently dry tunnel, and whether grout penetration and inflow into the finished tunnel corresponded to the predictions. An analysis was made of data from an original cored borehole, drilled before the tunnel was constructed and mapped thoroughly with regard to fractures and transmissivities. The predicted inflow into the tunnel was calculated and found to be four times higher than the measured inflow. The latter was 5 l/min along the 70 m tunnel, considered to be a good result at the current depth. New cored control boreholes were drilled along a section of the tunnel. The inflow positions and quantities in these holes, and the positions of grout found in the corresponding cores, were compared with the data from the original borehole. It was found that at the predicted positions of larger fractures, grout was observed and there was no inflow, showing that these had been successfully sealed. At the predicted positions of small fractures, no grout was visible in the cores, and small inflows showed that the grout had not sealed these fractures. The results indicated that cement-based grout successfully sealed fractures down to a hydraulic aperture of about 50 μm but not below 30 μm. This concurs with the initial design aimed at sealing fractures larger than 50 μm.  相似文献   

6.
This report presents initial results of the development process of a new product using andesites obtained from Afyon/Iscehisar region as an alternative to traditional ceramic wall and floor tiles used in construction sector. The series of characterization tests were conducted on andesite samples. Then, the samples were applied glaze for trial purposes. Analysis indicated that the andesite samples consisted of sanidine, mica and pyroxene minerals and its apparent porosity, density, water absorption and compressive strength values were 15.75%, 2610 g/cm3, 7.43% and 40.7 MPa, respectively. In heat microscope measurements, maximum sintering was recorded at 1138 °C. Linear expansion coefficient (α) of the andesite at 400 °C was 3.26 × 10?6 K?1. Firing performed by using the prepared glaze recipe at approximately 1160 °C produced good results in terms of body-glaze harmony. In addition, different decorative surface finishes to be used in indoor and outdoor spaces were obtained via under glaze decorative technique.  相似文献   

7.
A detailed investigation was carried out on a silty sand from Bo?tanj, Slovenia, in order to identify the role that particle breakage plays in test interpretations and mechanics. The soil was tested up to a high pressure in the triaxial and oedometer apparatus. Unexpected for a silty sand, the basic patterns of behaviour, in terms of strength and stiffness, were found to be similar to those of many previously investigated clean sands, with unique and parallel Normal Compression and Critical State Lines at higher stress levels and a horizontal asymptote to the Critical State Line at lower stress levels. The stiffness was controlled primarily by the state of the soil relative to the location of these lines. Despite the better grading, there was still very significant particle breakage. However, the breakage was largely confined to the coarse fraction. The grading curves after various tests all showed convergence with the initial grading towards 1 μm, which may therefore represent the comminution limit. It is believed that it is the particle breakage that caused the behaviour to follow a simple Critical State type of framework and why transitional or non-convergent compression behaviour was not found.  相似文献   

8.
This paper uses a case study from Brunswick Mine in Canada to determine a representative elementary volume (REV) of a jointed rock mass in the vicinity of important underground infrastructure. The equivalent geometrical and mechanical property REV sizes were determined based on fracture systems modeling and numerical experiments on a synthetic rock mass. Structural data collected in massive sulphides were used to generate a large fracture system model (FSM), 40 m×40 m×40 m. This FSM was validated and subsequently sampled to procure 40 cubic specimens with a height to width ratio of 2 based on sample width from 0.05 to 10 m. The specimens were introduced into a 3D particle flow code (PFC3D) model to create synthetic rock mass (SRM) samples. The geometrical REV of the rock mass was determined based on the number of fractures in each sampled volume (P30) and the volumetric fracture intensity (P32) of the samples. The mechanical REV was estimated based on the uniaxial compressive strength (UCS) and elastic modulus (E) of the synthetic rock mass samples.The REV size of the rock mass was determined based on a series of statistical tests. The T-test was used to assess whether the means of the samples were statistically different from each other and the F-test to compare the calculated variance. Finally, the coefficient of variation, for the synthetic rock mass geometrical and mechanical properties, was plotted against sample size. For this particular site the estimated geometrical REV size of the rock mass was 3.5 m×3.5 m×7 m, while the mechanical property REV size was 7 m×7 m×14 m. Consequently, for engineering purposes the largest volume (7 m×7 m×14 m) can be considered as the REV size for this rock mass.  相似文献   

9.
The purpose of this study is to examine the basic properties of polyester mortars using a fine tailings (FT) from an abandoned mine as a filler. FT with sizes of 10–69 μm is obtained through the centrifugal separation of tailing (TA), and tested for such basic properties, as particle shape, fineness of size distribution, liquid resin absorption, and heavy metal leaching. Polyester mortars with FT and ground calcium carbonate (GC) are prepared with various filler-(filler + binder) ratios and replacements of GC with FT, and tested for working life, flexural and compressive strengths, and chemical corrosion resistance. As a result, FT has almost the same properties as GC in terms of particle shape, fineness of size and liquid resin absorption. The working life of polyester mortars is prolonged with an increased filler-(filler + binder) ratio and replacement of GC with FT. From the vantagepoint of the strength development of the polyester mortars with FT, it is recommended that the filler-(filler + binder) ratio and replacement of GC with FT should be controlled at 50% or less. Mass and strength changes are generally lower in mortars containing FT than in those containing GC in all chemical solutions.  相似文献   

10.
Pore structure significantly affects the lightweight characteristics and thermal performance of materials. Therefore, in this study, sewage sludge ash (SSA) was used to make lightweight materials. Physical and chemical properties, and how the mixing proportions affected the foaming behavior were investigated, including the lightweight characteristics and pore structure of the materials produced. The experiments showed that the minimum required cement amount was determined by the compressive strength of the sewage sludge ash foamed material (SSAFM), not its alkali content. The hydration of cement and SSA mainly generated pores with diameters of less than 0.1  μm, but cement added with metallic aluminum powder produced pores with diameters larger than 10  μm. The addition of SSA increased the volume of pores smaller than 10  μm. The thermal conductivity of SSAFM was between 0.084 and 0.102 W/m K. Therefore, SSA could be used as the lightweight filler and heat-insulating material.  相似文献   

11.
Among tunnel fire safety strategies, evacuation speed in smoke, which is the basic evacuation performance characteristic, is one of the most important factors when assessing safety. An evacuation experiment in a full-scale tunnel filled with smoke has been done in order to clarify the relation between extinction coefficient up to Cs = 1.0 m−1, which includes Cs = 0.4 m−1 as a Japanese road tunnel fire prevention standard, and evacuation speed. The maximum, minimum and mean values of normal walking speeds are almost constant regardless of the extinction coefficient. As for the emergency evacuation speeds, the maximum speed is largely influenced by extinction coefficient, decreasing rapidly from 3.55 m/s at Cs = 0.30 m−1 to 2.53 m/s at Cs = 0.75 m−1 while the minimum and mean speeds are almost constant with a slight decrease as Cs increases. The maximum evacuation speed trends in the present experiments and those in Frantzich and Nillson (2003, 2004) and Fridolf et al. (2013), lie on the same decreasing logarithmic curve as a function of extinction coefficient.  相似文献   

12.
This paper deals with the effect of silica fume and styrene-butadiene latex (SBR) on the microstructure of the interfacial transition zone (ITZ) between Portland cement paste and aggregates (basalt). Scanning electron microscope (SEM) equipped with energy dispersive X-ray analysis system (EDX) was used to determine the ITZ thickness. In the plain concrete a marked ITZ around the aggregate particles (55 μm) was observed, while in concretes with silica fume or latex SBR the ITZ was less pronounced (35–40 μm). However, better results were observed in concretes with silica fume and latex SBR (20–25 μm).  相似文献   

13.
Rehabilitation and strengthening of concrete structures with externally bonded fibre reinforced polymers (FRPs) has been a viable technique for at least a decade. An interesting and useful application is strengthening of slabs or walls where openings are introduced. In these situations, FRP sheets are very suitable; not only because of their strength, but also due to that they are easy to apply in comparison to traditional steel girders or other lintel systems. Even though many benefits have been shown by strengthening openings with FRPs not much research have been presented in the literature.In this paper, laboratory tests on 11 slabs with openings, loaded with a distributed load are presented together with analytical and numerical evaluations. Six slabs with openings have been strengthened with carbon fibre reinforced polymers (CFRPs) sheets. These slabs are compared with traditionally steel reinforced slabs, both with (four slabs) and without openings (one slab). The slabs are quadratic with a side length of 2.6 m and a thickness of 100 mm. Two different sizes of openings are used, 0.85 × 0.85 m and 1.2 × 1.2 m.The results from the tests show that slabs with openings can be strengthened with externally bonded CFRP sheets. The performance is even better than for traditionally steel reinforced slabs. The numerical and analytical evaluations show good agreement with the experimental results.  相似文献   

14.
Rock stress problems induced by overburden or anisotropic stresses are significant to the TBM tunneling. In this paper, the effect of different confining stressed conditions on TBM performance are investigated by using full-scale cutting tests with large intact granite specimens (1000 mm × 1000 mm × 600 mm). In these tests, the effects of confining stresses on the normal force, rolling force, the cutting coefficient and specific energy are analyzed. It is found that the confining stress has significant impact on the normal force and rolling force. Specifically, for the same cutting spacing and penetration depth, the normal force increases with increasing confining stress due to enhancement of the rock resistance strength; meanwhile the rolling force decreases gradually with increasing confining stress. The stress deviation between two confining directions affects the optimum penetration that corresponds to small specific energy. The results provide better understanding of the effect of confining stress on the TBM performance and also recommend some guidelines for TBM tunneling under stressed geological condition.  相似文献   

15.
This paper deals with the effect of fine aggregate particles on the rheological properties of high performance cement-based materials. The effect of narrow fractions of fine aggregate particles on the rheology of silica fume-modified low water cement systems was analysed by means of a mortar rheometer. Yield stress and plastic viscosity were derived for time intervals between 10 and up to 150 min after water addition, and comparison with the slump value taken by the flow table test was done. It is concluded that the fine aggregate particles act as water fixation points in the diameter range of 75–1000 μm, via surface area, whereas for higher particle diameters the governing factor in terms of the resistance to flow may be related to other physical phenomena, such as the particle dimension and the resultant friction forces. Moreover, the water requirement in order to give each system the same workability is performed by adjusting the water content on each system. Furthermore, a quantitative model is proposed to describe the characteristic initial torque peak and resistance to flow behaviour of high performance concrete, as function of the particle size of aggregate. The combined effect of silica fume and fine aggregate particles on the rheology parameters is discussed.  相似文献   

16.
Pop-out and disaggregation of aggregate in a 1-year old cement concrete pavement originally mixed with air-entraining (AE) water-reducing agent was observed after the pavement had been exposed to ethylene glycol based snow-melting agent on the surface in the winter. The study used: gas chromatography–mass spectrometry (GC–MS) tests, 1H Nuclear Magnetic Resonance (NMR) tests, X-ray fluorescence analysis, emission spectral analysis (ICP), elution tests in anion type surfactant solution conducted for mortar and aggregate taken from the cement concrete where pop-out had occurred, as well as samples made by cement paste in the laboratory. Tests of the tensile strength, thermal-stress, and three-dimensional crack analysis by micro-focus computerized tomography (CT) scanner were conducted for specimens (2.5 × 2.5 × 10 cm) taken from the cement concrete where pop-out had occurred and with cement concrete samples made in the laboratory. Microscope observations and Electron Probe Micro Analyzer (EPMA) analysis were conducted for thin samples (2.5 × 2.5 cm and 20 μm thick) taken from the cement concrete where pop-out had occurred. The tests results showed that organic compounds contained in the cement reacted with the cement during the hardening process, generating cracks and gel in the cement paste. It was established that these caused the pop-out of the aggregate, together with the effects of the ethylene glycol based snow-melting agent that the cement concrete had been exposed to. No pop-out or disaggregation of aggregate were found in cement concrete at a repaired section, at the same location, with aggregate of low absorbing water ratio in this cold region and in place for 2 years.  相似文献   

17.
《Soils and Foundations》2012,52(4):682-697
A comprehensive set of experimental data on Bangkok subsoils from oedometer and triaxial tests are analysed in this paper in order to determine the stiffness and strength parameters for Hardening Soil Model. The parameters determined are the Mohr–Coulomb effective stress strength parameters together with the stiffness parameters; tangent stiffness for primary oedometer loading, secant stiffness in undrained and drained triaxial tests, unloading/reloading stiffness and the power for stress level dependency of stiffness. The oedometer data are obtained from three different Bangkok soil layers: soft clay at 6–8 m depths; medium clay at 12–14 m depths; and stiff clay at 15.5–18 m depths. The triaxial tests data are carried out for soft and stiff clays at depths of 5.5–6 m and of 16–18 m under both undrained and drained conditions, respectively. Finally, two sets of parameters for soft and stiff Bangkok clays are numerically calibrated against undrained and drained triaxial results using PLAXIS finite element software.  相似文献   

18.
This study develops the compressive strength, water permeability and workability of concrete by partial replacement of cement with agro-waste rice husk ash. Two types of rice husk ash with average particle size of 5 micron (ultra fine particles) and 95 micron and with four different contents of 5%, 10%, 15% and 20% by weight were used. Replacement of cement up to maximum of 15% and 20% respectively by 95 and 5 μm rice husk ash, produces concrete with improved strength. However, the ultimate strength of concrete was gained at 10% of cement replacement by ultra fine rice husk ash particles. Also the percentage, velocity and coefficient of water absorption significantly decreased with 10% cement replacement by ultra fine rice husk ash. Moreover, the workability of fresh concrete was remarkably improved by increasing the content of rice husk ash especially in the case of coarser size. It is concluded that partial replacement of cement with rice husk ash improves the compressive strength and workability of concrete and decreases its water permeability. In addition, decreasing rice husk ash average particle size provides a positive effect on the compressive strength and water permeability of hardened concrete but indicates adverse effect on the workability of fresh concrete.  相似文献   

19.
《Fire Safety Journal》2001,36(5):459-475
This paper quantifies the thermal movements of 14 simply supported precast reinforced concrete floor slabs of 4.5 m span and 900 mm width exposed to two standardised heating regimes used in fire resistance furnace tests. The tests were designed to show the effect of varying the slab thickness, type of concrete, imposed load, soffit protection and nature of fire exposure on the mid-span flexural deflection and axial movements of the slab ends. Measured deflections showed that during the 90 min design period of fire resistance thermal bowing was dominant and the effect of the 1.5 kN/m2 design imposed load was small. The NPD hydrocarbon fire exposure caused a doubling of the flexural deflections achieved using the standard BS 476: Part 8 (now Part 20) fire exposure in the first 20 min of exposure.  相似文献   

20.
A series of fire tests was conducted in a small-scale tunnel with dimensions of 10.0 m (L) × 0.75 m (W) × 0.45 m (H) and a rectangular cross-section. Detailed measurements of the velocity and temperature within a steady fire-driven ceiling-jet running along the centre of the ceiling were conducted.Referring to a theoretical derivation process described in the literature as a starting point, correlations representing the velocity and temperature attenuation along the tunnel axis were developed.The values of the coefficients included in the developed correlation for the velocity attenuation were measured using a particle image velocimetry system during the experiments conducted in the small-scale tunnel. The value of the Stanton number was determined by considering the ceiling-jet thickness, which was derived from the velocity distribution. The values of the coefficients included in the developed correlation for the temperature attenuation were also determined based on experimental results described in the literature, which were obtained in a large-scale tunnel constructed using good heat insulation properties.Through these correlations developed for the velocity and temperature attenuations along the tunnel axis, the variation in the Richardson number of the ceiling-jet based on the distance from the fire source position along the tunnel axis was examined, and the position where the ceiling-jet changed from a shooting flow to a tranquil flow was determined. The boundary positions between the shooting and tranquil flows were determined using correlations between the velocity and/or temperature attenuation, which were compared with the variation in the Richardson number along the tunnel axis to verify their appropriateness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号