首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The One-vs-One strategy is among the most used techniques to deal with multi-class problems in Machine Learning. This way, any binary classifier can be used to address the original problem, since one classifier is learned for each possible pair of classes. As in every ensemble method, classifier combination becomes a vital step in the classification process. Even though many combination models have been developed in the literature, none of them have dealt with the possibility of reducing the number of generated classifiers after the training phase, i.e., ensemble pruning, since every classifier is supposed to be necessary.On this account, our objective in this paper is two-fold: (1) We propose a transformation of the aggregation step, which lead us to a new combination strategy where instances are classified on the basis of the similarities among score-matrices. (2) This fact allows us to introduce the possibility of reducing the number of binary classifiers without affecting the final accuracy. We will show that around 50% of classifiers can be removed (depending on the base learner and the specific problem) and that the confidence degrees obtained by these base classifiers have a strong influence on the improvement in the final accuracy.A thorough experimental study is carried out in order to show the behavior of the proposed approach in comparison with the state-of-the-art combination models in the One-vs-One strategy. Different classifiers from various Machine Learning paradigms are considered as base classifiers and the results obtained are contrasted with the proper statistical analysis.  相似文献   

2.
One-vs-One strategy is a common and established technique in Machine Learning to deal with multi-class classification problems. It consists of dividing the original multi-class problem into easier-to-solve binary subproblems considering each possible pair of classes. Since several classifiers are learned, their combination becomes crucial in order to predict the class of new instances. Due to the division procedure a series of difficulties emerge at this stage, such as the non-competence problem. Each classifier is learned using only the instances of its corresponding pair of classes, and hence, it is not competent to classify instances belonging to the rest of the classes; nevertheless, at classification time all the outputs of the classifiers are taken into account because the competence cannot be known a priori (the classification problem would be solved). On this account, we develop a distance-based combination strategy, which weights the competence of the outputs of the base classifiers depending on the closeness of the query instance to each one of the classes. Our aim is to reduce the effect of the non-competent classifiers, enhancing the results obtained by the state-of-the-art combinations for One-vs-One strategy. We carry out a thorough experimental study, supported by the proper statistical analysis, showing that the results obtained by the proposed method outperform, both in terms of accuracy and kappa measures, the previous combinations for One-vs-One strategy.  相似文献   

3.
A common way to model multi-class classification problems is by means of Error-Correcting Output Codes (ECOC). Given a multi-class problem, the ECOC technique designs a code word for each class, where each position of the code identifies the membership of the class for a given binary problem. A classification decision is obtained by assigning the label of the class with the closest code. One of the main requirements of the ECOC design is that the base classifier is capable of splitting each sub-group of classes from each binary problem. However, we can not guarantee that a linear classifier model convex regions. Furthermore, non-linear classifiers also fail to manage some type of surfaces. In this paper, we present a novel strategy to model multi-class classification problems using sub-class information in the ECOC framework. Complex problems are solved by splitting the original set of classes into sub-classes, and embedding the binary problems in a problem-dependent ECOC design. Experimental results show that the proposed splitting procedure yields a better performance when the class overlap or the distribution of the training objects conceil the decision boundaries for the base classifier. The results are even more significant when one has a sufficiently large training size.  相似文献   

4.
The presence of noise in data is a common problem that produces several negative consequences in classification problems. In multi-class problems, these consequences are aggravated in terms of accuracy, building time, and complexity of the classifiers. In these cases, an interesting approach to reduce the effect of noise is to decompose the problem into several binary subproblems, reducing the complexity and, consequently, dividing the effects caused by noise into each of these subproblems. This paper analyzes the usage of decomposition strategies, and more specifically the One-vs-One scheme, to deal with noisy multi-class datasets. In order to investigate whether the decomposition is able to reduce the effect of noise or not, a large number of datasets are created introducing different levels and types of noise, as suggested in the literature. Several well-known classification algorithms, with or without decomposition, are trained on them in order to check when decomposition is advantageous. The results obtained show that methods using the One-vs-One strategy lead to better performances and more robust classifiers when dealing with noisy data, especially with the most disruptive noise schemes.  相似文献   

5.
Multi-class classification problems can be addressed by using decomposition strategy. One of the most popular decomposition techniques is the One-vs-One (OVO) strategy, which consists of dividing multi-class classification problems into as many as possible pairs of easier-to-solve binary sub-problems. To discuss the presence of classes with different cost, in this paper, we examine the behavior of an ensemble of Cost-Sensitive Back-Propagation Neural Networks (CSBPNN) with OVO binarization techniques for multi-class problems. To implement this, the original multi-class cost-sensitive problem is decomposed into as many sub-problems as possible pairs of classes and each sub-problem is learnt in an independent manner using CSBPNN. Then a combination method is used to aggregate the binary cost-sensitive classifiers. To verify the synergy of the binarization technique and CSBPNN for multi-class cost-sensitive problems, we carry out a thorough experimental study. Specifically, we first develop the study to check the effectiveness of the OVO strategy for multi-class cost-sensitive learning problems. Then, we develop a comparison of several well-known aggregation strategies in our scenario. Finally, we explore whether further improvement can be achieved by using the management of non-competent classifiers. The experimental study is performed with three types of cost matrices and proper statistical analysis is employed to extract the meaningful findings.  相似文献   

6.
Physical activity recognition using wearable sensors has gained significant interest from researchers working in the field of ambient intelligence and human behavior analysis. The problem of multi-class classification is an important issue in the applications which naturally has more than two classes. A well-known strategy to convert a multi-class classification problem into binary sub-problems is the error-correcting output coding (ECOC) method. Since existing methods use a single classifier with ECOC without considering the dependency among multiple classifiers, it often fails to generalize the performance and parameters in a real-life application, where different numbers of devices, sensors and sampling rates are used. To address this problem, we propose a unique hierarchical classification model based on the combination of two base binary classifiers using selective learning of slacked hierarchy and integrating the training of binary classifiers into a unified objective function. Our method maps the multi-class classification problem to multi-level classification. A multi-tier voting scheme has been introduced to provide a final classification label at each level of the solicited model. The proposed method is evaluated on two publicly available datasets and compared with independent base classifiers. Furthermore, it has also been tested on real-life sensor readings for 3 different subjects to recognize four activities i.e. Walking, Standing, Jogging and Sitting. The presented method uses same hierarchical levels and parameters to achieve better performance on all three datasets having different number of devices, sensors and sampling rates. The average accuracies on publicly available dataset and real-life sensor readings were recorded to be 95% and 85%, respectively. The experimental results validate the effectiveness and generality of the proposed method in terms of performance and parameters.  相似文献   

7.
多分类问题代价敏感AdaBoost算法   总被引:8,自引:2,他引:6  
付忠良 《自动化学报》2011,37(8):973-983
针对目前多分类代价敏感分类问题在转换成二分类代价敏感分类问题存在的代价合并问题, 研究并构造出了可直接应用于多分类问题的代价敏感AdaBoost算法.算法具有与连续AdaBoost算法 类似的流程和误差估计. 当代价完全相等时, 该算法就变成了一种新的多分类的连续AdaBoost算法, 算法能够确保训练错误率随着训练的分类器的个数增加而降低, 但不直接要求各个分类器相互独立条件, 或者说独立性条件可以通过算法规则来保证, 但现有多分类连续AdaBoost算法的推导必须要求各个分类器相互独立. 实验数据表明, 算法可以真正实现分类结果偏向错分代价较小的类, 特别当每一类被错分成其他类的代价不平衡但平均代价相等时, 目前已有的多分类代价敏感学习算法会失效, 但新方法仍然能 实现最小的错分代价. 研究方法为进一步研究集成学习算法提供了一种新的思路, 得到了一种易操作并近似满足分类错误率最小的多标签分类问题的AdaBoost算法.  相似文献   

8.
多标签代价敏感分类集成学习算法   总被引:12,自引:2,他引:10  
付忠良 《自动化学报》2014,40(6):1075-1085
尽管多标签分类问题可以转换成一般多分类问题解决,但多标签代价敏感分类问题却很难转换成多类代价敏感分类问题.通过对多分类代价敏感学习算法扩展为多标签代价敏感学习算法时遇到的一些问题进行分析,提出了一种多标签代价敏感分类集成学习算法.算法的平均错分代价为误检标签代价和漏检标签代价之和,算法的流程类似于自适应提升(Adaptive boosting,AdaBoost)算法,其可以自动学习多个弱分类器来组合成强分类器,强分类器的平均错分代价将随着弱分类器增加而逐渐降低.详细分析了多标签代价敏感分类集成学习算法和多类代价敏感AdaBoost算法的区别,包括输出标签的依据和错分代价的含义.不同于通常的多类代价敏感分类问题,多标签代价敏感分类问题的错分代价要受到一定的限制,详细分析并给出了具体的限制条件.简化该算法得到了一种多标签AdaBoost算法和一种多类代价敏感AdaBoost算法.理论分析和实验结果均表明提出的多标签代价敏感分类集成学习算法是有效的,该算法能实现平均错分代价的最小化.特别地,对于不同类错分代价相差较大的多分类问题,该算法的效果明显好于已有的多类代价敏感AdaBoost算法.  相似文献   

9.
Most existing research has demonstrated the success of different decomposition and ensemble strategies for solving multi-class classification problems. This study proposes a new ensemble strategy for One-vs-One (OVO) scheme that uses optimizing decision directed acyclic graph (ODDAG) whose structure is determined by maximizing the fitness on the training set instead of by predefined rules. It makes an attempt to reduce the effect of non-competent classifiers in OVO scheme like decision directed acyclic graph (DDAG) but in another way. We test the proposed method on some public data sets and compare it to some other widely used methods to select the proper candidates and related settings for a problem with practical concern from financial industry in China, i.e. the prediction of listing status of companies. The experimental result shows that our model can outperform the benchmarked methods on this real problem. In addition, the ODDAG combined with decision tree is a white box model whose internal rules can be viewed and checked by decision makers.  相似文献   

10.
现实中许多领域产生的数据通常具有多个类别并且是不平衡的。在多类不平衡分类中,类重叠、噪声和多个少数类等问题降低了分类器的能力,而有效解决多类不平衡问题已经成为机器学习与数据挖掘领域中重要的研究课题。根据近年来的多类不平衡分类方法的文献,从数据预处理和算法级分类方法两方面进行了分析与总结,并从优缺点和数据集等方面对所有算法进行了详细的分析。在数据预处理方法中,介绍了过采样、欠采样、混合采样和特征选择方法,对使用相同数据集算法的性能进行了比较。从基分类器优化、集成学习和多类分解技术三个方面对算法级分类方法展开介绍和分析。最后对多类不平衡数据分类研究领域的未来发展方向进行总结归纳。  相似文献   

11.
Multi-class classification is one of the major challenges in real world application. Classification algorithms are generally binary in nature and must be extended for multi-class problems. Therefore, in this paper, we proposed an enhanced Genetically Optimized Neural Network (GONN) algorithm, for solving multi-class classification problems. We used a multi-tree GONN representation which integrates multiple GONN trees; each individual is a single GONN classifier. Thus enhanced classifier is an integrated version of individual GONN classifiers for all classes. The integrated version of classifiers is evolved genetically to optimize its architecture for multi-class classification. To demonstrate our results, we had taken seven datasets from UCI Machine Learning repository and compared the classification accuracy and training time of enhanced GONN with classical Koza’s model and classical Back propagation model. Our algorithm gives better classification accuracy of almost 5% and 8% than Koza’s model and Back propagation model respectively even for complex and real multi-class data in lesser amount of time. This enhanced GONN algorithm produces better results than popular classification algorithms like Genetic Algorithm, Support Vector Machine and Neural Network which makes it a good alternative to the well-known machine learning methods for solving multi-class classification problems. Even for datasets containing noise and complex features, the results produced by enhanced GONN is much better than other machine learning algorithms. The proposed enhanced GONN can be applied to expert and intelligent systems for effectively classifying large, complex and noisy real time multi-class data.  相似文献   

12.
Fisher kernels combine the powers of discriminative and generative classifiers by mapping the variable-length sequences to a new fixed length feature space, called the Fisher score space. The mapping is based on a single generative model and the classifier is intrinsically binary. We propose a multi-class classification strategy that applies a multi-class classification on each Fisher score space and combines the decisions of multi-class classifiers. We experimentally show that the Fisher scores of one class provide discriminative information for the other classes as well. We compare several multi-class classification strategies for Fisher scores generated from the hidden Markov models of sign sequences. The proposed multi-class classification strategy increases the classification accuracy in comparison with the state of the art strategies based on combining binary classifiers. To reduce the computational complexity of the Fisher score extraction and the training phases, we also propose a score space selection method and show that, similar or even higher accuracies can be obtained by using only a subset of the score spaces. Based on the proposed score space selection method, a signer adaptation technique is also presented that does not require any re-training.  相似文献   

13.
The problem addressed in this study concerns mining data streams with concept drift. The goal of the article is to propose and validate a new approach to mining data streams with concept-drift using the ensemble classifier constructed from the one-class base classifiers. It is assumed that base classifiers of the proposed ensemble are induced from incoming chunks of the data stream. Each chunk consists of prototypes and information about whether the class prediction of these instances, carried-out at earlier steps, has been correct. Each data chunk can be updated by using the instance selection technique when new data arrive. When a new data chunk is formed, the ensemble model is also updated on the basis of weights assigned to each one-class classifier. In this article, two well-known instance-based learning algorithms—the CNN and the ENN—have been adopted to solve the one-class classification problems and, consequently, update the proposed classifier ensemble. The proposed approaches have been validated experimentally, and the computational experiment results are shown and discussed. The experiment results prove that the proposed approach using the ensemble classifier constructed from the one-class base classifiers with instance selection for chunk updating can outperform well-known approaches for data streams with concept drift.  相似文献   

14.
Hierarchical classification can be seen as a multidimensional classification problem where the objective is to predict a class, or set of classes, according to a taxonomy. There have been different proposals for hierarchical classification, including local and global approaches. Local approaches can suffer from the inconsistency problem, that is, if a local classifier has a wrong prediction, the error propagates down the hierarchy. Global approaches tend to produce more complex models. In this paper, we propose an alternative approach inspired in multidimensional classification. It starts by building a multi-class classifier per each parent node in the hierarchy. In the classification phase, all the local classifiers are applied simultaneously to each instance, providing a probability for each class in the taxonomy. Then the probability of the subset of classes, for each path in the hierarchy, is obtained by combining the local classifiers results. The path with highest probability is returned as the result for all the levels in the hierarchy. As an extension of the proposal method, we also developed a new technique, based on information gain, to classifies at different levels in the hierarchy. The proposed method was tested on different hierarchical classification data sets and was compared against state-of-the-art methods, resulting in superior predictive performance and/or efficiency to the other approaches in all the datasets.  相似文献   

15.
现有的跨领域情感分类方法大多只利用了单个源领域到目标域的迁移特征,没有充分考虑目标域实例与不同源域之间的联系。针对此问题,本文提出一种无监督的多源跨领域情感分类模型。首先利用单个源域到目标域的迁移特征训练基分类器,并对不同的基分类器加权;然后将不同基分类器对目标域实例预测的集成一致性作为目标函数,优化该目标函数,得到不同基分类器的权重;最后利用加权后的基分类器得到目标域的情感分类结果。该模型在Amazon数据集上进行了多源域情感迁移实验,取得了较好的实验结果,相对其他基线模型,在4组实验中平均提升了0.75%。  相似文献   

16.
针对AdaBoost算法不能有效提升NB(Naive Bayesian)的分类性能,提出一种改进的样本权重维护策略.权重的调整不仅依据样本是否分错,还需考虑前几轮的多个基分类器对它的投票分歧.基分类器的信任度不但与错误率有关,还与基分类器间的差异性有关.这样可以提高基分类器的正确性,增加基分类器的差异性.实验结果表明,改进的BoostVE-NB算法能有效地提升NB文本分类性能.  相似文献   

17.
Classification of weld flaws with imbalanced class data   总被引:1,自引:0,他引:1  
This paper presents research results of our investigation of the imbalanced data problem in the classification of different types of weld flaws, a multi-class classification problem. The one-against-all scheme is adopted to carry out multi-class classification and three algorithms including minimum distance, nearest neighbors, and fuzzy nearest neighbors are employed as the classifiers. The effectiveness of 22 data preprocessing methods for dealing with imbalanced data is evaluated in terms of eight evaluation criteria to determine whether any method would emerge to dominate the others. The test results indicate that: (1) nearest neighbor classifiers outperform the minimum distance classifier; (2) some data preprocessing methods do not improve any criterion and they vary from one classifier to another; (3) the combination of using the AHC_KM data preprocessing method with the 1-NN classifier is the best because they together produce the best performance in six of eight evaluation criteria; and (4) the most difficult weld flaw type to recognize is crack.  相似文献   

18.
Group decision making is a multi-criteria decision-making method applied in many fields. However, the use of group decision-making techniques in multi-class classification problems and rule generation is not explored widely. This investigation developed a group decision classifier with particle swarm optimization (PSO) and decision tree (GDCPSODT) for analyzing students’ mathematic and scientific achievements, which is a multi-class classification problem involving rule generation. The PSO technique is employed to determine weights of condition attributes; the decision tree is used to generate rules. To demonstrate the performance of the developed GDCPSODT model, other classifiers such as the Bayesian classifier, the k-nearest neighbor (KNN) classifier, the back propagation neural networks classifier with particle swarm optimization (BPNNPSO) and the radial basis function neural networks classifier with PSO (RBFNNPSO) are used to cope with the same data. Experimental results indicated the testing accuracy of GDCPSODT is higher than the other four classifiers. Furthermore, rules and some improvement directions of academic achievements are provided by the GDCPSODT model. Therefore, the GDCPSODT model is a feasible and promising alternative for analyzing student-related mathematic and scientific achievement data.  相似文献   

19.
A simple and fast multi-class piecewise linear classifier is proposed and implemented. For a pair of classes, the piecewise linear boundary is a collection of segments of hyperplanes created as perpendicular bisectors of line segments linking centroids of the classes or parts of classes. For a multi-class problem, a binary partition tree is initially created which represents a hierarchical division of given pattern classes into groups, with each non-leaf node corresponding to some group. After that, a piecewise linear boundary is constructed for each non-leaf node of the partition tree as for a two-class problem. The resulting piecewise linear boundary is a set of boundaries corresponding to all non-leaf nodes of the tree. The basic data structures of algorithms of synthesis of a piecewise linear classifier and classification of unknown patterns are described. The proposed classifier is compared with a number of known pattern classifiers by benchmarking with the use of real-world data sets.  相似文献   

20.
Support Vector Machines (SVM) represent one of the most promising Machine Learning (ML) tools that can be applied to the problem of traffic classification in IP networks. In the case of SVMs, there are still open questions that need to be addressed before they can be generally applied to traffic classifiers. Having being designed essentially as techniques for binary classification, their generalization to multi-class problems is still under research. Furthermore, their performance is highly susceptible to the correct optimization of their working parameters. In this paper we describe an approach to traffic classification based on SVM. We apply one of the approaches to solving multi-class problems with SVMs to the task of statistical traffic classification, and describe a simple optimization algorithm that allows the classifier to perform correctly with as little training as a few hundred samples. The accuracy of the proposed classifier is then evaluated over three sets of traffic traces, coming from different topological points in the Internet. Although the results are relatively preliminary, they confirm that SVM-based classifiers can be very effective at discriminating traffic generated by different applications, even with reduced training set sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号