首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of copolyimide/SiO2 hollow sphere thin films were prepared successfully based on bis[3,5‐dimethyl‐4‐(4‐aminophenoxy)phenyl]methane and 9,9‐bis(4‐(4‐aminophenoxy)phenyl)fluorene (molar ratio = 3 : 1) as diamine, and 4,4′‐(4,4′‐isopropylidenediphenoxy)bis(phthalic anhydride) as dianhydride, with different wt % SiO2 hollow sphere powder with particle size 500 nm. Some films possessed excellent dielectric properties, with ultralow dielectric constants of 1.8 at 1 MHz. The structures and properties of the thin films were measured with Fourier transform infrared spectra, scanning electron microscope, thermogravimetric analysis, and dynamic mechanical thermal analysis. The polyimide (PI) films exhibited glass‐transition temperatures in the range of 209– 273°C and possessed initial thermal decomposition temperature reaching up to 413–477°C in air and 418–472°C in nitrogen. Meanwhile, the composite films were also exhibited good mechanical properties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Two series of aromatic polyimides containing various linkage groups based on 2,7‐bis(4‐aminophenoxy)naphthalene or 3,3′‐dimethyl‐4,4′‐diaminodiphenylmethane and different aromatic dianhydrides, namely 4,4′‐(4,4′‐isopropylidenediphenoxy)bis(phthalic anhydride), 4,4′‐(hexafluoroisopropylidene)bis(phthalic anhydride), 3,3′,4,4′ benzophenonetetracarboxylic dianhydride, 9,9‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]fluorene dianhydride and 4,4′‐(4,4′‐hexafluoroisopropylidenediphenoxy)bis(phthalic anhydride), were synthesized and compared with regard to their thermal, mechanical and gas permeation properties. All these polymers showed high thermal stability with initial decomposition temperature in the range 475–525 °C and glass transition temperature between 208 and 286 °C. Also, the polymer films presented good mechanical characteristics with tensile strength in the range 60–91 MPa and storage modulus in the range 1700–2375 MPa. The macromolecular chain packing induced by dianhydride and diamine segments was investigated by examining gas permeation through the polymer films. The relationships between chain mobility and interchain distance and the obtained values for gas permeability are discussed. © 2014 Society of Chemical Industry  相似文献   

3.
A series of molecular‐weight‐controlled imide resins end‐capped with phenylethynyl groups were prepared through the polycondensation of a mixture of 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzene and 1,3‐bis(4‐aminophenoxy)benzene with 4,4′‐oxydiphthalic anhydride in the presence of 4‐phenylethynylphthalic anhydride as an end‐capping agent. The effects of the resin chemical structures and molecular weights on their melt processability and thermal properties were systematically investigated. The experimental results demonstrated that the molecular‐weight‐controlled imide resins exhibited not only meltability and melt stability but also low melt viscosity and high fluidability at temperatures lower than 280°C. The molecular‐weight‐controlled imide resins could be thermally cured at 371°C to yield thermoset polyimides by polymer chain extension and crosslinking. The neat thermoset polyimides showed excellent thermal stability, with an initial thermal decomposition temperature of more than 500°C and high glass‐transition temperatures greater than 290°C, and good mechanical properties, with flexural strengths in the range of 140.1–163.6 MPa, flexural moduli of 3.0–3.6 GPa, tensile strengths of 60.7–93.8 MPa, and elongations at break as high as 14.7%. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

4.
A novel bismaleimide, 2,2′‐dimethyl‐4,4′‐bis(4‐maleimidophenoxy)biphenyl, containing noncoplanar 2,2′‐dimethylbiphenylene and flexible ether units in the polymer backbone was synthesized from 2,2′‐dimethyl‐4,4′‐bis(4‐aminophenoxy)biphenyl with maleic anhydride. The bismaleimide was reacted with 11 diamines using m‐cresol as a solvent and glacial acetic acid as a catalyst to produce novel polyaspartimides. Polymers were identified by elemental analysis and infrared spectroscopy, and characterized by solubility test, X‐ray diffraction, and thermal analysis (differential scanning calorimetry and thermogravimetric analysis). The inherent viscosities of the polymers varied from 0.22 to 0.48 dL g−1 in concentration of 1.0 g dL−1 of N,N‐dimethylformamide. All polymers are soluble in N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, dimethylsulfoxide, pyridine, m‐cresol, and tetrahydrofuran. The polymers, except PASI‐4, had moderate glass transition temperature in the range of 188°–226°C and good thermo‐oxidative stability, losing 10% mass in the range of 375°–426°C in air and 357°–415°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 279–286, 1999  相似文献   

5.
A pyromellitic dianhydride (benzene‐1,2,4,5‐tetracarboxylic dianhydride) was reacted with L ‐isoleucine in acetic acid, and the resulting imide acid [N,N′‐(pyromellitoyl)‐bis‐L ‐isoleucine] (4) was obtained in a high yield. 4 was converted into N,N′‐(pyromellitoyl)‐bis‐L ‐isoleucine diacid chloride by a reaction with thionyl chloride. The polycondensation reaction of this diacid chloride with several aromatic diamines, including 1,4‐phenylenediamine, 4,4′‐diaminodiphenyl methane, 4,4′‐diaminodiphenylsulfone (4,4′‐sulfonyldianiline), 4,4′‐diaminodiphenylether, 2,4‐diaminotoluene, and 1,3‐phenylenediamine, was developed with two methods. The first method was polymerization under microwave irradiation, and the second method was low‐temperature solution polymerization, with trimethylsilyl chloride used as an activating agent for the diamines. The polymerization reactions proceeded quickly and produced a series of optically active poly(amide imide)s with good yields and moderate inherent viscosities of 0.17–0.25 dL/g. All of the aforementioned polymers were fully characterized by IR, elemental analyses, and specific rotation. Some structural characterization and physical properties of these optically active poly(amide imide)s are reported. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 951–959, 2004  相似文献   

6.
A semicrystalline copolyimide derived from 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (s‐BPDA), 1,3‐bis‐(4‐aminophenoxy)benzene (TPER), and 4,4′‐oxydianiline (4,4′‐ODA), end capped with phthalic anhydride (PA), was synthesized. Glass fiber reinforced composite was also prepared by impregnating powdery glass fiber with poly(amic acid) followed by solution imidization techniques. This copolyimide displayed a glass transition temperature of 202°C and a melting temperature of 373°C by differential scanning colorimeter (DSC). Crystallization and melting behaviors were investigated under nonisothermal and isothermal crystallization conditions. Double exothermic peaks were found by DSC when the copolyimide was cooled from the melt and multiple melting behaviors can be observed after the coployimide had been isothermally crystallized at different temperatures. Mechanical properties were investigated by dynamical mechanical analysis (DMA) and tensile experiments. The samples were cured at different temperatures and then tested at different temperatures. Results indicated that the copolyimide and the composite showed excellent mechanical properties. Additionally, this copolyimide also showed lower melt viscosity by rheological analysis. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40345.  相似文献   

7.
A series of new cardo poly(ether imide)s bearing flexible ether and bulky xanthene pendant groups was prepared from 9,9‐bis[4‐(4‐aminophenoxy)phenyl]xanthene with six commercially available aromatic tetracarboxylic dianhydrides in N,N‐dimethylacetamide (DMAc) via the poly(amic acid) precursors and subsequent thermal or chemical imidization. The intermediate poly(amic acid)s had inherent viscosities between 0.83 and 1.28 dL/g, could be cast from DMAc solutions and thermally converted into transparent, flexible, and tough poly(ether imide) films which were further characterized by X‐ray and mechanical analysis. All of the poly(ether imide)s were amorphous and their films exhibited tensile strengths of 89–108 MPa, elongations at break of 7–9%, and initial moduli of 2.12–2.65 GPa. Three poly(ether imide)s derived from 4,4′‐oxydiphthalic anhydride, 4,4′‐sulfonyldiphthalic anhydride, and 2,2‐bis(3,4‐dicarboxyphenyl))hexafluoropropane anhydride, respectively, exhibited excellent solubility in various solvents such as DMAc, N,N‐dimethylformamide, N‐methyl‐2‐pyrrolidinone, pyridine, and even in tetrahydrofuran at room temperature. The resulting poly(ether imide)s with glass transition temperatures between 286 and 335°C had initial decomposition temperatures above 500°C, 10% weight loss temperatures ranging from 551 to 575°C in nitrogen and 547 to 570°C in air, and char yields of 53–64% at 800°C in nitrogen. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
This article describes the synthesis and characterization of bisitaconimides on the basis of 4,4′‐diaminodiphenylether, 2,2′‐bis[4‐(4‐aminophenoxy)phenyl]propane, 1,3‐bis(4‐aminophenoxy)benzene, and 1,4‐bis (4‐aminophenoxy)benzene. Isomerization of the itaconimides to citraconimides (varying in the range of 25–40%) was observed during synthesis. The curing exotherm and thermal stability of the cured resins depended on the backbone structure of itaconimides. The curing exotherm immediately followed the melting endotherms. These resins cured at lower temperatures than bismaleimides but thermal stability of cured bismaleimides was higher than bisitaconimides. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2277–2282, 2002  相似文献   

9.
A series of addition cure poly(imide siloxane) resins were synthesized, incorporating various concentrations of α, ω‐bis(3‐aminopropyl) poly(dimethyl‐diphenylsiloxanes), and α, ω‐bis(p‐aminophenyl) poly(dimethylsiloxane) into the formulated imide oligomer. Both carbon and glass fiber textile laminates were fabricated using amic acid and polymerization of monomer reactants (PMR) approaches. The cured composite laminates were subjected to an accelerated thermo‐oxidative aging environment of 400°C for 100 h in air. Physical, thermal, and mechanical properties were evaluated to determine the structure‐oxidative stability interrelationships. In general, composite mechanical properties were found to increase with increasing siloxane concentration in the matrix. Composite thermo‐oxidative durability (measured via mass loss and mechanical property retention after oxidative aging) was improved through incorporation of diphenyl and diphenyl‐dimethyl siloxane segments into the imide oligomer backbone up to ∼35% by weight aminosiloxane. Oxidative stability was found to be mostly dependent on the degree of phenyl substitution on the silicon atoms in the siloxane blocks, as compared to the moiety attaching the amine groups to the siloxane block. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

10.
N‐Trimellitylimido‐DL and L ‐alanine ( 3 ) were prepared from the reaction of trimellitic anhydride ( 1 ) with DL and L ‐alanine ( 2 ) in N,N‐dimethyl formamide (DMF) solution at refluxing temperature. The direct polycondensation reaction of the monomers imide‐diacid ( 3 ) with 4,4′‐diaminodiphenylsulfone ( 4a ), 4,4′‐diaminodiphenylmethane ( 4b ), 1,4‐phenylenediamine ( 4c ), 1,3‐phenylenediamine ( 4d ), 2,4‐diaminotoluene ( 4e ), and 4,4′‐diaminodiphenylether ( 4f ) was carried out in a medium consisting of triphenyl phosphite, N‐methyl‐2‐pyrolidone (NMP), pyridine, and calcium chloride. The resulting poly(amide‐imide)s PAIs, with inherent viscosities 0.32–0.66 dL/g, were obtained in high yield. All of the above‐mentioned compounds were fully characterized by IR, elemental analyses, and specific rotation. Some structural characterization and physical properties of these new optically active PAI s are reported. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1312–1318, 2001  相似文献   

11.
Five new poly(ether imides) have been prepared on reaction with oxydiphthalic anhydride (ODA) with five different diamines: 1,4‐bis(p‐aminophenoxy‐2′‐trifluoromethyl benzyl) benzene, 4,4′‐bis(p‐aminophenoxy‐2′‐trifluoromethyl benzyl) benzene, 1,3‐bis(p‐aminophenoxy‐2′‐trifluoromethyl benzyl) benzene, 2,6‐bis(p‐aminophenoxy‐2′‐trifluoromethyl benzyl) pyridine, and 2,5‐bis(p‐aminophenoxy‐2′‐trifluoromethyl benzyl) thiophene. Synthesized polymers showed good solubility in different organic solvents. The polyimide films have low water absorption of 0.3–0.7%, low dielectric constants of 2.82–3.19 at 1 MHz, and high optical transparency at 500 nm (>73%). These polyimides showed very high thermal stability with decomposition temperatures (5% weight loss) up to 531°C in air and good isothermal stability; only 0.4% weight loss occurred at 315°C after 5 h. Transparent thin films of these polyimides exhibited tensile strength up to 147 MPa, a modulus of elasticity up to 2.51 GPa and elongation at break up to 30% depending upon the repeating unit structure. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 821–832, 2004  相似文献   

12.
N‐Trimellitylimido‐L ‐leucine was reacted with thionyl chloride, and N‐trimellitylimido‐L ‐leucine diacid chloride was obtained in a quantitative yield. The reaction of this diacid chloride with p‐aminobenzoic acid was performed in dry tetrahydrofuran, and bis(p‐amidobenzoic acid)‐N‐trimellitylimido‐L ‐leucine (5) was obtained as a novel optically active aromatic imide–amide diacid monomer in a high yield. The direct polycondensation reaction of the monomer imide–amide diacid 5 with 4,4′‐diaminodiphenylsulfone, 4,4′‐diaminodiphenylether, 1,4‐phenylenediamine, 1,3‐phenylenediamine, 2,4‐diaminotoluene, and benzidine (4,4′‐diaminobiphenyl) was carried out in a medium consisting of triphenyl phosphite, N‐methyl‐2‐pyrolidone, pyridine, and calcium chloride. The resulting novel poly(amide imide)s (PAIs), with inherent viscosities of 0.22–0.52 dL g?1, were obtained in high yields, were optically active, and had moderate thermal stability. All of the compounds were fully characterized with IR spectroscopy, elemental analyses, and specific rotation. Some structural characterization and physical properties of these new optically active PAIs are reported. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 35–43, 2002; DOI 10.1002/app.10181  相似文献   

13.
A series of aromatic poly(amide imide)s containing pendant phthalonitrile groups was prepared by solution polycondensation reaction of 4,4′‐diamino‐4″‐(3,4‐dicyanophenoxy)triphenylmethane, 1, or of different amounts of 1 and 1,3‐bis(4‐aminophenoxy)benzene, with a fluorinated imide diacid chloride, 2,2‐bis[N‐(4‐chloroformylphenyl)phthalimidyl]hexafluoroisopropane. The polymers were easily soluble in polar organic solvents, such as N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, and dimethylsulfoxide. They can be cast from solutions into thin flexible films showing nanoactuation properties in the range of 120–450 nm, depending on the nitrile group content, when an electric voltage is applied on their surface. Electrical insulating properties of the polymer films were evaluated on the basis of dielectric permittivity and dielectric loss and their variation with the frequency and temperature. The values of the dielectric permittivity at 10 kHz and 20°C were in the range of 3.01–3.43. All polymers exhibited high thermal stability, decomposition temperature being above 420°C. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

14.
This article reports synthesis and structure property studies of block copolyimides synthesized using diamino room temperature ionic liquids (RTIL) as diamine monomers. Specifically, polyimide oligomers of different lengths were synthesized using 2,2‐bis (3,4‐carboxylphenyl) hexafluoropropane dianhydride (6FDA) and diamino RTIL (1,3‐di(3‐aminopropyl) imidazolium bis[(trifluoromethyl) sulfonyl] imide). These oligomers were copolymerized with 6FDA and m‐phenylenediamine (MDA) using in situ polymerization to form (6FDA‐RTIL)‐(6FDA‐MDA) block copolyimides. The impact of the length and relative concentration of 6FDA‐RTIL oligomer in the copolymer on the resulting thermal, physical, and gas transport properties was monitored. As the concentration of the 6FDA‐RTIL segments increased, the backbone of the block copolyimides became more flexible resulting in a decrease in the glass transition temperature (Tg) and an increase in the density. The permeabilities of the RTIL containing copolyimides were consistently lower than those of the base polyimide, 6FDA‐MDA, with some increase in selectivities. Interestingly, the permeabilities of films produced with the low molecular weight oligomers were very different than those produced with same composition of the high molecular weight oligomers. This may be indicative of very different morphologies within these copolyimides. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43077.  相似文献   

15.
N‐Trimellitylimido‐L ‐phenylalanine was prepared from the reaction of 1,2,4‐benzenetricarboxylic anhydride with L ‐phenylalanine in N,N‐dimethylformamide solution at refluxing temperature. The direct polycondensation reaction of the monomer imide‐diacid with 4,4′‐diaminodiphenylsulfone, 4,4′‐diaminodiphenylmethane, 1,4‐phenylenediamine, 1,3‐phenylenediamine, 2,4‐diaminotoluene, 4,4′‐diaminodiphenylether and benzidine was carried out in a medium consisting of triphenyl phosphite, N‐methyl‐2‐pyrrolidone, pyridine and calcium chloride. The resulting poly(amide–imide)s, PAIs, having inherent viscosities of 0.21–0.45 dlg?1 were obtained in high yield. All of the above compounds were fully characterized by IR spectroscopy and elemental analyses. The optical rotation of all PAIs has also been measured. Some structural characterization and physical properties of these new optically active PAIs are reported. © 2001 Society of Chemical Industry  相似文献   

16.
A series of pyridine‐containing poly(imide‐siloxane) (PIS) copolymers with different amounts of PDMS with various segmental lengths were synthesized from 2,6‐diaminopyridine (DAP), α,ω′‐aminopropylpoly(dimethylsiloxane) (PDMS), 1,3‐bis(4‐aminophenoxy)benzene (APB), and 4,4′‐oxydiphthalic dianhydride (ODPA). A modified synthetic approach was applied instead of approaches commonly reported in the literature, to ensure the incorporation of DAP and PDMS. The effects of the content and the segmental length of PDMS on the thermal glass transition temperature (Tg), dielectric constant, and surface electrical resistivity of the copolymer are investigated. The copolymers were attached to copper foil by hot‐pressing, and changes in wettability caused the peel strength of the laminates to increase with the PDMS content, but to decrease as the DAP content increased. Furthermore, X‐ray photoelectron spectroscopy was employed to determine the loci of failures (LOF) of the laminates and to monitor the movement of LOF, which varies with the PDMS content. For those laminates with good peel strengths, the LOF occur in the interior of PIS layer, indicating that the adhesion is cohesive rather than adhesive. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

17.
A series of uncontrolled molecular weight homopolyimides and copolyimides based on 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (s‐BPDA)/4,4′‐oxydianiline (4,4′‐ODA)/1,3‐bis(4‐aminophenoxy)benzene (TPER) were synthesized. All the polyimides displayed excellent thermal stability and mechanical properties, as evidenced by dynamic thermogravimetric analysis and tensile properties testing. A singular glass transition temperature (Tg) was found for each composite from either differential scanning calorimetry (DSC) or dynamic mechanical analysis (DMA), but the values determined from tan δ of DMA were much different from those determined from DSC and storage modulus (E′) of DMA. The Fox equation was used to estimate the random Tg values. Some composites exhibited re‐crystallization after quenching from the melt; upon heating, multi‐melting behavior was observed after isothermal crystallization at different temperatures. The equilibrium melting temperature was estimated using the Hoffman‐Weeks method. Additionally, DMA was conducted to obtain E′ and tan δ. Optical properties were strongly dependent on the monomer composition as evidenced by UV‐visible spectra. X‐ray diffraction was used to interpret the crystal structure. All the results indicated that composites with TPER composition ≥ 70% were dominated by the TPER/s‐BPDA polyimide phase, and ≤40% by the 4,4′‐ODA/s‐BPDA polyimide phase. When the ratio between the two diamines was close to 1:1, the properties of the copolyimides were very irregular, which means a complicated internal structure. Copyright © 2011 Society of Chemical Industry  相似文献   

18.
Polyimide composite films were prepared by mixing the BaTiO3 particles into poly(amic acid) solution followed by film casting and thermal imidization under controlled temperature conditions. The poly(amic acid) was synthesized by solution polycondensation reaction of 4,4′‐oxydiphthalic anhydride with 2,6‐bis(4‐aminophenoxy)benzonitrile, using N‐methyl‐2‐pyrrolidone as solvent. The surface of BaTiO3 particles was modified by treating with an aminosilane coupling agent, 3‐aminopropyltriethoxysilane. Fourier transform infrared spectroscopy, X‐ray diffraction and scanning electron microscopy were used to characterize the structure and properties of the composites. The influence of BaTiO3 content on the composite film properties was evidenced. The films exhibited good thermal stability having the initial decomposition temperature above 520°C. They had stable dielectric properties over large intervals of temperature and frequency. The dielectric constant and the dielectric loss increased with the increase of BaTiO3 content. The dynamic mechanical analysis and dielectric spectroscopy revealed subglass transitions γ and β. At higher temperature an α‐relaxation that corresponds to the glass transition and a conductivity process were evidenced. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

19.
Six new poly(amide‐imide)s 8a–f containing trimethylene moiety in the main chain were synthesized by the polycondensation reactions of 1,3‐bis[4,4'‐(trimellitimido) phenoxy] propane 6 with six different aromatic diamines 7a–f in a medium constituting N‐methyl‐2‐pyrrolidone, triphenylphosphite, CaCl2, and pyridine as condensing agents. The polycondensation reaction produced a series of novel poly(amide‐imide)s 8a–f in high yields with inherent viscosities between 0.35 and 0.63 dL/g. The resulting poly(amide‐imide)s were characterized by elemental analysis, viscosity measurements, thermal gravimetric analysis (TGA and DTG), solubility tests, and FTIR spectroscopy. 1,3‐Bis[4,4'‐(trimellitimido) phenoxy] propane 6 as a new monomer containing trimethylene moiety was synthesized using a three‐step reaction. At first 1,3‐bis[4,4'‐nitrophenoxy] propane 3 was prepared by the reaction of 4‐nitrophenol 1 with 1,3‐dibromo propane 2 in DMF solution . Then, dinitro 3 was reduced to 1,3‐bis[4,4'‐aminophenoxy] propane 4 by using a solution of sodium sulfite in ethanol. Finally, 1,3‐bis[4,4'‐(trimellitimido) phenoxy] propane 6 was prepared by the reaction of one equivalent diamine 4 with two equivalents of trimellitic anhydride 5 in a mixture of acetic acid‐pyridine (3 : 2). © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
In order to obtain polyamides with enhanced solubility and processability, as well as good mechanical and thermal properties, several novel polyamides containing sulfone‐ether linkages and xanthene cardo groups based on a new diamine monomer, 9,9‐bis[4‐(4‐aminophenoxy)phenyl]xanthene (BAPX), were investigated. The BAPX monomer was synthesized via a two‐step process consisting of an aromatic nucleophilic substitution reaction of readily available 4‐chloronitrobenzene with 9,9‐bis(4‐hydroxyphenyl)xanthene in the presence of potassium carbonate in N,N‐dimethylformamide, followed by catalytic reduction with hydrazine and Pd/C. Four novel aromatic polyamides containing sulfone‐ether linkages and xanthene cardo groups with inherent viscosities between 0.98 and 1.22 dL g?1 were prepared by low‐temperature polycondensation of BAPX with 4,4′‐sulfonyldibenzoyl chloride, 4,4′‐[sulfonyl‐bis(4‐phenyleneoxy)]dibenzoyl chloride, 3,3′‐[sulfonyl‐bis(4‐phenyleneoxy)]dibenzoyl chloride and 4,4′‐[sulfonyl‐bis(2,6‐dimethyl‐1,4‐phenyleneoxy)]dibenzoyl chloride in N,N‐dimethylacetamide (DMAc) solution containing pyridine. All these new polyamides were amorphous and readily soluble in various polar solvents such as DMAc and N‐methylpyrrolidone. These polymers showed relatively high glass transition temperatures in the range 238–298 °C, almost no weight loss up to 450 °C in air or nitrogen atmosphere, decomposition temperatures at 10% weight loss ranging from 472 to 523 °C and 465 to 512 °C in nitrogen and air, respectively, and char yields at 800 °C in nitrogen higher than 50 wt%. Transparent, flexible and tough films of these polymers cast from DMAc solution exhibited tensile strengths ranging from 78 to 87 MPa, elongations at break from 9 to 13% and initial moduli from 1.7 to 2.2 GPa. Primary characterization of these novel polyamides shows that they might serve as new candidates for processable high‐performance polymeric materials. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号