首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of Fe(III) on the TiO2-assisted photocatalytic degradation of maleic acid has been investigated. The study on the kinetics of the removal of organic matter, as well as the identification of all the stable mineralization intermediates, demonstrates that the presence of Fe(III), adsorbed onto the TiO2 surface, renders a more efficient process through a cleaner mineralization pathway compared to bare TiO2. Furthermore, the behaviour of the system does not depend on the iron source. On the other hand, the study of the Fe(III) influence on the interaction of maleic acid with TiO2 in the solid phase, by means of ATR–FT-IR technique, has been performed. From all the reported results, it is concluded that the Fe(III) effects are mainly due to surface phenomena. The enhanced photocatalytic activity is interpreted under different perspectives, including adsorbed Fe–maleic complexes, enhanced adsorption of oxygen and lower geminate recombination yields.  相似文献   

2.
The degradation of herbicide monuron (initial concentration 5×10−5 M) in plate photoreactor with laminar flow of the solution using heterogeneous (TiO2) and/or homogeneous photocatalyst (Fe(ClO4)3) was investigated. For the rate of photoinduced degradation with Fe(III) aquacomplexes, the initial concentration of monomer Fe(OH)2+, which is the most photocatalytically active form of Fe(III), is crucial. The degradation rate for combination of both photocatalysts is higher than the sum of the rates for separately taken single catalysts. This is caused not only by the addition of the two effects but also by the fact that Fe(III) acts as scavanger of electrons photogenerated in TiO2 particles thus let down hole–electron recombination. Fe(OH)2+ appears to be the most photoactive trap for electrons.  相似文献   

3.
The sensitized photocatalytic degradation of mono-, di- and trichlorophenols on iron oxides aqueous suspensions of -Fe2O3 and -FeOOH is reported in detail. The degradation of these compounds followed pseudo-first-order kinetics when -Fe2O3 was used as photocatalyst. -FeOOH was found to be inactive for chlorophenols degradation with the exception of 2,4-dichlorophenol (2,4-DCP) where a modest effect was observed. The formation of a surface complex by the chlorophenols with the iron oxide and the solubility of the particular chlorophenol in aqueous solution were observed to be the controlling parameters during the photodegradation. The results obtained with the most active catalyst -Fe2O3 are compared with TiO2. Total mineralization of chlorophenols was observed on TiO2 while on -Fe2O3 only partial mineralization was observed. In either case, the intermediates produced in solution during the photodegradation were found to be significantly more biodegradable than the initial compound. For mono-, di- and trichlorophenols the overall photocatalytic degradation was observed to increase in the order: 2,4,6-trichlorophenol (2,4,6-TCP)<2,3-dichlorophenol (2,3-DCP)<2-chlorophenol (2-CP)<2,4-DCP. The former sequence shows that the recalcitrant 2,4-DCP degrades more rapidly than other chlorophenols tested during this study. The photodegradation of chlorophenols on -Fe2O3 and TiO2 proceeds mechanistically through para-hydroxylation of the initial compound as suggested by the intermediates found by high-pressure liquid chromatography HPLC during the course of the degradation.  相似文献   

4.
The photodegradation has been studied of the cationic surfactant N-dodecylpyridinum chloride (N-DPCl) in aqueous heterogeneous dispersions of semiconducting catalyst particles (TiO2, TiO2/Pt and ZnO). The photooxidation was followed by UV spectrophotometry and surface tension measurements. The photodegradation approximates first order kinetics and is discussed on the basis of a simple phenomenological model. The degradation rate is almost identical for TiO2 and ZnO and higher than that for TiO2/Pt. A high mineralization yield is obtained from measurements of CO2 evolution, while an increase in the surface tension is observed. Pyridinum ring breakage, which is known to proceed with difficulty, is also indicated by the presence of NH4+ and NO3 ions.  相似文献   

5.
The production of hydrogen from aqueous Pt/TiO2 suspensions illuminated with UV–vis light has been examined in the absence and in presence of azo-dyes in solution. The effects of operational variables, including dye concentration, solution pH and temperature, on the rate of hydrogen production were investigated. It has been found that deposition of Pt (0.5 wt.%) on the semiconductor surface results in an increase of the H2 production rate, which goes through a maximum with time of irradiation and then drops to steady-state values comparable to those obtained over bare TiO2. Both, maximum and steady-state rates obtained over Pt/TiO2 suspensions were found to increase with increasing solution pH and temperature. Addition of small quantities of azo-dyes in solution results in significantly enhanced rates of H2 production for a period which depends on dye concentration, solution pH and, to a lesser extent, solution temperature. It is proposed that the dye acts as a scavenger of photogenerated oxidizing species while it is degraded toward CO2 and inorganic ions. When complete mineralization is achieved, oxygen can no longer be removed from the photocatalyst surface and the rate drops to steady-state values, comparable to those obtained in the absence of azo-dye in solution. The amount of additional H2 produced is directly proportional to the amount of dye added in the solution. The rate increases with increasing solution pH, where dye degradation is faster, indicating that the process is limited by the rate of consumption of photogenerated oxygen. It is concluded that, under certain experimental conditions, it is possible to obtain significantly enhanced rates of photoinduced hydrogen production from Pt/TiO2 suspensions with simultaneous mineralization of azo-dyes. The process could be used for combined production of fuel H2 and degradation of organic pollutants present in water.  相似文献   

6.
The heterogeneous photocatalytic oxidation of fumaric, maleic and oxalic acids over TiO2 has been investigated. For aqueous suspensions at pH lower than the point of zero charge (pzc) of TiO2, the photocatalytic degradation of the three studied diacids follows the Langmuir–Hinshelwood kinetic model, with the rate constant of the process decreasing in the order oxalic acid>maleic acidfumaric acid. At these low pH media, the adsorption of the organic diacids onto TiO2 particles is a key feature for their degradation, which is initiated by a photo-Kolbe process. For fumaric and maleic acids, a cistrans isomerisation induced by the interaction between adsorbed molecule and semiconductor surface occurs. At pH’s higher than the pzc of TiO2 the rate of oxalic acid oxidation decreases noticeably, while fumaric and maleic acids are both efficiently degraded in homogeneous phase by reacting with OH√ radicals photochemically generated on the TiO2 surface, giving rise to a significant increment of both isomers degradation rate with increasing pH. At these pH’s higher than the pzc of the TiO2, the three studied diacids show a very low degree of adsorption onto the semiconductor surface and no evidence of cistrans isomerisation for both maleic and fumaric acids is detected. In accordance with the observed pH effects on degradation rate and over detected intermediates, a different mineralisation pathway is proposed as function of initial pH.  相似文献   

7.
The photocatalytic decolorization of adsorbed organic dyes (Acid Blue 9, Acid Orange 7, Reactive Black 5 and Reactive Blue 19) in air was examined, applicable to self-cleaning surfaces and catalyst characterization. Dye-coated Degussa P25 titanium dioxide (TiO2) and dye-coated photo-inert aluminum oxide (Al2O3) particles, both of sub-monolayer initial dye coverage, were illuminated with 1.3 mW cm−2 of near-UV light. Visual evidence of color removal is reported with photographic images. Two methods, Indirect and Direct Analysis, were employed to quantitatively examine the decolorization kinetics of dyes using UV–visible transmission and diffuse reflectance spectroscopy, respectively. A decrease in dye concentration with time was observed with near-UV illumination of dye-coated TiO2 powders for all dyes. Dyes did not photodegrade significantly on photo-inert Al2O3.

UV–visible spectroscopy data was used to model the kinetics of the photocatalytic degradation. Two first-order reactions in series provided the most convincing rate form for the photodegradation of dyes adsorbed to TiO2, with a first step the conversion of colored dye to colored intermediate, and the second the conversion to colorless product(s). The first rate constant was of similar magnitude for all dyes, averaging k1 = 0.13 min−1. Similarly, for the second, k2 = 0.0014 min−1.  相似文献   


8.
The photocatalytic degradation of methyl parathion in aqueous solutions, using two different photocatalysts (TiO2 and ZnO) has been investigated. The degradation of methyl parathion follows first order kinetics according to the Langmuir–Hinshelwood model. Complete degradation is achieved within 45 or 150 min when treated with illuminated TiO2 or ZnO, respectively. It was observed that the initial rate increases linearly with an increase of the amount of catalyst up to a level where it reaches a plateau corresponding to the optimum of light absorption. The addition of an oxidant (K2S2O8) leads to an increase in the rate of photooxidation. Moreover, illuminated TiO2 suspensions were proved to be more effective in mineralizing the insecticide compared to ZnO suspensions. Measurements of phosphate, sulfate and nitrate ions gave valuable information about how this process is achieved. Addition of the oxidant enhances mineralization for both photocatalytic systems. Up to eight by-products were identified by GC–MS technique during the photocatalytic degradation of the insecticide that proceeds via oxidation, hydroxylation, dealkylation and hydrolysis of the ester group reaction pathways. Finally, the toxicity of the treated solution was reduced only in the presence of TiO2, while ZnO suspensions appear to increase the toxicity due to photo-dissolution of ZnO releasing zinc in the treated solution.  相似文献   

9.
谷笛  朱凌岳  吴红军  王宝辉 《化工进展》2016,35(12):3928-3933
通过二次阳极氧化电化学方法制备纳米孔/纳米管复合结构的阵列型TiO2纳米管(2-step TiO2 NTs),实验证明这种结构的TiO2 NTs对大气中的挥发性有机化合物(volatile organic compounds,VOCs)有着十分优异的降解效果。本文通过气态甲醇的光催化降解来评估比较一次氧化生成的TiO2纳米管(1-step TiO2 NTs)和2-step TiO2 NTs的催化效果。实验结果表明,二次阳极氧化电化学方法所生成的TiO2 NTs的纳米结构对光致电荷的产生有着十分重要的推动作用。之所以2-step TiO2 NTs的纳米孔/纳米管复合结构能够显著提高VOCs的降解效率,是由于这种特殊的结构能够更加有利于电子的传递,同时能够有效地抑制光生电子和空穴的复合。最后,通过实验数据阐述了2-step TiO2 NTs光催化活性的增强机理,这种新结构显示出更小的带隙、更高效的光生电子/空穴分离效率和VOCs降解性能。  相似文献   

10.
In this study, humic acid was mineralized and degraded photocatalytically in presence of bare TiO2 and silver loaded TiO2 (0.5–5.0 at.% Ag). X-ray diffraction (XRD) and inductive coupled plasma (ICP) analysis confirm the complete photodeposition of silver over TiO2 by photodeposition method. X-ray photoemission spectroscopy (XPS) studies confirmed the presence of Ag0 in all Ag–TiO2 samples and the absence of Ag+ ions. Silver loading over TiO2 improved the rate of mineralization and degradation of humic acid with a maximum loading of 1.0 at.% Ag. Ninety percent carbon from humic acid was mineralized to CO2 only after 60 min by using bare TiO2 as a photocatalyst. However, this conversion was possible within 40 min by using 1.0 at.% Ag-loaded TiO2. This observation verifies that coating of metals like silver over TiO2 acts as an electron sink and can improve the redox reaction by preventing electron–hole recombination reaction. The optimum 1.0 at.% Ag loading in the current work is indicative that the blocking of the TiO2 surface active sites by silver also plays an important role in the photocatalytic mineralization and degradation of humic acid. As the silver loading is increased, less number of active site are available over the surface of photocatalyst TiO2 for redox reaction. This finding was supported by the TEM analysis of the photocatalyst samples.  相似文献   

11.
W. Bahnemann  M. Muneer  M.M. Haque   《Catalysis Today》2007,124(3-4):133-148
The photocatalytic degradation of maleic hydrazide (1), propham (2), tebuthiuron (3), propachlor (4), chlortoluron (5), thiram (6), phenoxyacetic acid (7), 2,4,5-trichlorophenoxy acetic acid (8), 4-chlorophenoxy acetic acid (9), uracil (10), 5-bromouracil (11) and bromothymol blue (12) have been investigated in aqueous suspensions of titanium dioxide (TiO2) under a variety of conditions. The degradation was studied by monitoring the change in substrate concentration employing UV spectroscopic analysis technique and depletion in total organic carbon (TOC) content as a function of irradiation time. The degradation kinetics of the compounds were investigated under different conditions, such as types of TiO2, pH, catalyst concentration, substrate concentration, temperature and in the presence of different electron acceptors, such as hydrogen peroxide (H2O2), potassium persulphate (K2S2O8), ammonium persulphate (NH4)2S2O8 and potassium bromate (KBrO3) besides molecular oxygen. TiO2 Degussa P25 was found to be more efficient photocatalyst for the degradation of the model compounds as compared with other photocatalysts. The degradation products were analysed using GC/MS analysis technique and probable pathways for the formation of different products have been proposed.  相似文献   

12.
In the present study TiO2/clay composites were synthesized by dispersion of TiO2 on the surfaces of a natural montmorillonite and a synthetic hectorite in order to increase the sorption ability of TiO2 and therefore its photocatalytic action. Six materials with different loading in TiO2 (15, 30 and 55 wt%) were prepared and characterized by several analytical techniques including XRD, BET and SEM analysis. The synthetic procedure allows the development of delaminated layers for hectorite–TiO2 samples, while in the case of montmorillonite–TiO2 composites we have the formation of a more lamellar-like aggregation. It was found that, the greater the percentage of TiO2, the greater the pore volume and the specific surface area of the montmorillonite–TiO2 samples. On the contrary, in the case of hectorite–TiO2 samples, as the content of TiO2 increases, the surface area and pore volume decreases. The photocatalytic efficiency of the nanocomposite catalysts was evaluated using a chloroacetanilide herbicide (dimethachlor) in water as model compound. The primary degradation of dimethachlor followed pseudo-first-order kinetics according to the Langmuir–Hinshelwood model. All supported catalysts exhibit good photodegradation efficiency and their overall removal efficiency per mass of TiO2 was better than that of bare TiO2 produced by the sol–gel method. In conclusion, together with their good sedimentation ability the composite materials could be considered as a promising alternative for the removal of organic water contaminants.  相似文献   

13.
针对臭氧(O3)降解对氯苯酚(4-CP)中效率有限且尾气排放高的问题,采用光催化辅助高浓度臭氧循环工艺并对TiO2浓度、循环气量以及pH值等因素进行研究,结合对苯醌变化及猝灭剂试验分析其协同机理.循环气量为2.0 L·min-1,TiO2投加量为250 mg·L-1时,O3/TiO2/UV体系的降解动力学系数为0.29...  相似文献   

14.
A new series of titania industrial photocatalysts have been elaborated by Millennium Inorganic Chemicals and were denoted Millennium-PC/10, PC/25 and PC/50 with respective specific surface areas equal to 11, 23 and 43 m2 g−1. Their photocatalytic activities have been determined and compared in the solar pilot CPC-photoreactor at the Plataforma Solar de Almeria (PSA) (Spain) in the photocatalytic degradation of four different representative pollutants (4-chlorophenol, nitrobenzene, 2-chlorobenzoic acid and hydrobutanedioic (malic) acid), whose degradation pathways had previously been elucidated in laboratory experiments with artificial light, using titania Degussa P-25 as a reference photocatalyst. The study concerned the influence of (i) the nature of organic pollutants, (ii) the surface area and (iii) the concentration of suspended TiO2. The affinity of the pollutants for TiO2 and the presence of heteroatoms in the reactant molecules intervened on the activities of Millennium-PCs when compared to Degussa P-25. The higher the affinity of the organic pollutants for titania, the higher the efficiency of Millennium-PC/10 photocatalyst calibrated on the initial rate of pollutant disappearance. The degradation pathways were found similar for both photocatalysts and the primary steps of the degradation for the different types of molecules were discussed.

4-Chlorophenol (4-CP), a model pollutant for waste waters, was then chosen for the study of the influence of the surface areas and of the concentration of Millennium-PC photocatalysts. The initial apparent rate constants of 4-CP degradation in presence of all Millennium-PC catalysts were all higher than that obtained with Degussa P-25. When choosing the total organic carbon (TOC) disappearance rate as an overall kinetic parameter, Millennium-PC/10 and PC/25 appeared as less active than Degussa P-25, with longer solar exposures (by about 10%) necessary to obtain a total mineralisation. However, Millennium-PC/50 resulted as the best catalyst in all cases. The optimal slurry concentration (g l−1) has been determined for each Millennium TiO2 sample.

While the optimum of Degussa P-25 had previously been found equal to 0.2 g l−1, higher amounts of Millennium-PC samples were required. A twice higher concentration (0.4 g l−1) increased the activities by factors equal to 1.2 and 1.5 for Millennium-PC/50 and PC/10, respectively. The rate constants of disappearance of intermediates and of TOC were quantitatively affected by factors in agreement with a multiple consecutive reactions model. In any case, titania Millennium-PC/50 appeared as the best catalyst among all those tested, including Degussa P-25.  相似文献   


15.
李曼弯  张美  毕先均 《工业催化》2015,23(12):986-990
在[Bmim]PF6离子液体介质中微波辅助制备稀土元素Ce掺杂改性的TiO_2光催化剂TiO_2-Ce,以甲基橙溶液和苯酚溶液为模拟污染物,在紫外光照和微波辐射-紫外光照降解条件下考察TiO_2-Ce催化剂的光催化活性。利用荧光技术以对苯二甲酸作为荧光探针检测TiO_2-Ce催化剂表面产生的羟基自由基,并对光催化降解反应进行动力学分析,以了解光催化降解反应机理。结果表明,通过优化反应条件制得的TiO_2-Ce催化剂具有较高光催化降解活性和热稳定性,在紫外光照和微波辐射-紫外光照条件下降解60 min后,甲基橙降解率分别为98.6%和99.3%,苯酚降解率分别为96.6%和97.2%。荧光光谱分析表明,TiO_2-Ce在微波辐射-紫外光照条件下产生的羟基自由基比紫外光照多,因而微波辐射-紫外光照具有强化TiO_2-Ce降解模拟污染物作用的效果。反应动力学数据表明,TiO_2-Ce光催化降解甲基橙溶液反应呈一级反应动力学规律,其表观速率常数k最大值为0.056 2 min-1。  相似文献   

16.
The photocatalytic degradation of a number of organic compounds in solution, including alcohols and organic acids, has been investigated under unaerated conditions with the use of Pt/TiO2 photocatalyst and solar or UV irradiation. It has been found that production of CO2 is in all cases accompanied by evolution of hydrogen, the production rate of which is significantly enhanced, compared with that obtained in the absence of organic additives in solution. Results are explained by considering that organic compounds act as sacrificial electron donors, which become progressively oxidized toward CO2 by consuming photogenerated holes and/or oxygen. This results in decreased rates of electron–hole recombination and oxygen–hydrogen back reaction and, concomitantly, in increased H2-production rates. The rate of photoinduced hydrogen production depends strongly on the concentration of the sacrificial agent employed and to a lesser extent on solution pH and temperature. When complete mineralization of the sacrificial agent is achieved, photogenerated oxygen can no longer be removed from the photocatalyst surface and the H2-production rate drops to steady-state values, comparable to those obtained in the absence of the organic compound in solution. The amounts of carbon dioxide and “additional” hydrogen produced depend on the nature of the organic additive and are directly proportional to its initial concentration in solution. Quantification of results shows that the overall process may be described as “photoinduced reforming of organic compounds at room temperature”. It is concluded that mineralization of organic pollutants such as alcohols and organic acids, which are common waste products of biomass processing industries, can be achieved with simultaneous production of H2 fuel. The process may provide an efficient and cost effective method for cleaning up waste streams.  相似文献   

17.
为提高TiO2的可见光光电催化活性,本文用Bi2MoO6和碳量子点(CQDs)对TiO2纳米管阵列(TNA)进行了改性。以CQDs、Bi(NO3)3·5H2O和Na2MoO4为原料,通过简单的溶剂热法,在TNA中沉积了CQDs和Bi2MoO6,成功制备了新型Bi2MoO6@CQDs/TNA。扫描电镜(SEM)和元素mapping分析结果表明,CQDs和Bi2MoO6成功涂覆在TNA管壁上。通过在可见光下降解甲基橙(MO)溶液,评价了所制备的光催化剂的光电催化性能。结果显示,经3 h的光电催化降解,Bi2MoO6@CQDs/TNA对MO的去除率比Bi2MoO6/TNA高32%。CQDs优异的上转换光致发光(UCPL)性能促进了TiO2在可见光下被激发产生光生载流子,同时Bi2MoO6与TiO2的耦合抑制了光生载流子的复合,从而提高了Bi2MoO6@CQDs/TNA的光电催化活性。  相似文献   

18.
Some probe catalytic photooxidation reactions with aliphatic and aromatic organic compounds having different acid strengths, i.e. methanoic acid, ethanoic acid, benzoic acid and 4-nitrophenol, were carried out in aqueous systems by using polycrystalline TiO2 powders doped with various transition metal ions (Co, Cr, Cu, Fe, Mo, V and W). The Co-doped powder showed to be more photoactive than the bare TiO2 for methanoic acid degradation while the behaviour of TiO2/Cu and TiO2/Fe was similar to that of the support. TiO2/W was the most efficient sample for the photodegradation of benzoic acid and 4-nitrophenol, TiO2 the most active powder for ethanoic acid. A tentative explanation is provided by taking into account: (i) the dissociation constants (Ka) of the different acids used as substrates; (ii) their aliphatic or aromatic nature; (iii) the points of zero charge (PZC) of the photocatalysts; (iv) their relative rate constants for photoelectron–hole recombination (kr) determined by femtosecond pump-probe diffuse reflectance spectroscopy.  相似文献   

19.
张华  张子鹏  张澜澜  张晓飞  刘译阳 《化工进展》2020,39(12):5299-5308
研究者在苯胺模拟废水高级氧化处理方面开展了很多研究,但针对炼化企业苯胺装置废水含盐高、色度高、COD降解难等问题尚未开展工程应用。为解决苯胺生产废水的实际问题,本研究开展了TiO2/UV-H2O2氧化降解苯胺废水(1~2m3/h)的现场试验研究。考察了苯胺废水在单独TiO2/UV、单独H2O2氧化及TiO2/UV-H2O2协同作用下的处理效果,提出了苯胺废水的最佳处理工艺方案,并进行了成本核算。结果表明,单独TiO2/UV和单独H2O2氧化对苯胺废水的脱色率和COD去除率偏低,而TiO2/UV-H2O2协同作用时苯胺废水脱色率和COD去除率可达95%以上。协同氧化体系中,H2O2的氧化降解作用显著,H2O2投加量1%~2%;酸性条件利于苯胺废水的降解,特别是pH=3.8~4.2时;TiO2/UV和H2O2协同作用一段时间后,停止UV而凭借残余H2O2可以将体系中的中间产物继续降解直至矿化成CO2。TiO2/UV- H2O2协同处理炼化企业苯胺生产废水,出水COD≤60mg/L,色度≤20倍,单位能耗约18.44kW·h/m3,明显低于文献报道值,具有显著的技术性与经济性。  相似文献   

20.
卢月洁  王鑫  毕先均 《工业催化》2016,24(11):19-26
用硝酸银和钛酸正丁酯为原料,采用溶胶-凝胶-微波辐射干燥法合成银掺杂TiO_2光催化剂TiO_2-Ag。为了提高催化剂的光催化活性和降解有机污染物的速率,用微波辅助Ti O2-Ag光催化剂降解有机污染物。通过扫描电子显微镜、红外光谱法、紫外可见光谱法和荧光光谱法对TiO_2-Ag催化剂进行测试和表征。以甲基橙为有机污染物,分别在太阳光照射和微波、紫外、紫外-微波条件下降解甲基橙以考察催化剂的光催化活性。结果表明,TiO_2-Ag光催化剂最佳制备条件为:银掺杂量n(Ag+)∶n(Ti~(4+))=0.003,离子液体用量3.0 m L,微波干燥功率210 W,微波干燥时间20 min,焙烧温度650℃,焙烧时间3 h,此条件下制备的TiO_2-Ag光催化剂在太阳光照射4 h下,紫外光照、微波辐射和紫外光照-微波辐射分别辐射55 min后,甲基橙降解率分别为98.70%、98.79%和99.05%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号