共查询到20条相似文献,搜索用时 62 毫秒
1.
正交分组多载波码分多址(GO-MC-CDMA)每个用户组是独立的MC-CDMA系统,合理选择组内载波数使得最大似然(ML)算法切实可行。分析了GO-MC-CDMA上行链路在考虑载波频偏(CFO)的情况下采用最大似然序列估计(MLSE)检测的系统性能;比较了不同用户数和不同数字调制方式对误比特率(BER)的影响。数值仿真结果表明:载波频偏在一定范围内时,采用ML多用户检测的GO-MC-CDMA系统具有较好的对抗载波频偏能力和优异的误比特率性能;用户数目和调制方式对误比特率影响较大。 相似文献
2.
3.
随着信息技术、数据库技术、网络技术的发展,各行各业均存储了大量的文本数据,怎样从这些文本数据中发掘有价值的信息和知识成为人们急需解决的问题。提出基于Maximum Likelihood与HMM的文本挖掘方法,利用Maximum Likelihood构建隐马尔可夫模型,对论文条目进行特定信息的发掘,并克服了实验过程中“零概率”的缺陷。实验结果表明准确率平均达到0.9,召回率平均达到0.85,从理论和实践上证明该方法是有效的。 相似文献
4.
传统Web信息抽取的隐马尔可夫模型对初值十分敏感和在实际训练中极易得到局部最优模型参数。提出了一种使用遗传算法优化HMM模型参数的Web信息抽取混合算法。该算法使用实数矩阵编码表示染色体,似然概率值为适应度取值,将GA与Baum-Welch算法相结合对HMM模型参数进行全局优化,并且调整GA-HMM的Baum-Welch算法参数实现Web信息抽取。实验结果表明,新的算法在精确度和召回率指标上比传统HMM具有更好的性能。 相似文献
5.
文语转换是人机交互的一项关键技术。当前的基于隐马尔可夫模型的语音合成系统已经能够合成出较高自然度和可懂度的声音,但与自然语音相比,韵律的节奏感不强,其主要原因是受时长的影响。提出在生成状态时长时同时优化状态、音子和音节三层模型的似然值,并通过考虑状态和长时时长的信息,使在重估计的过程中减少状态时长的错误。在普通话语料库上的实验证明,优化后的时长模型能够产生更加准确的状态时长,与状态级的基线系统相比较,均方根误差由19.90提高到了17.45。主观评测也显示改进后的模型优于基线模型。 相似文献
6.
7.
多用户检测技术目的是在传统检测技术的基础上,充分利用造成多址干扰的所有用户信号信息对多用户做联合检测,以有效地消除多址干扰和远近效应问题。基于隐训练序列的最小均方误差(MMSE)多用户检测算法是在基于完全训练序列的MMSE多用户检测算法基础上,通过对算法进行改进,将训练序列嵌入到用户信息序列中发送。该检测算法提高了频谱资源的利用率,仿真结果表明其性能接近于完全训练序列的MMSE多用户检测算法,并且算法复杂度较低,适于工程应用。 相似文献
8.
9.
基于线性预测和最大似然的基音检测算法 总被引:3,自引:0,他引:3
根据语音信号产生机理,结合常用的线性预测和最大似然法,提出了一种有效的基音检测算法。该算法采用频域分块估计候选基音周期的范围,提高了算法的计算速度。仿真实验表明,该算法与传统方法相比其基音检测结果有了明显的改善,克服了随机错误及倍频、半频错误,在低信噪比下鲁棒性较好。 相似文献
10.
11.
计算机系统入侵检测的隐马尔可夫模型 总被引:32,自引:0,他引:32
入侵检测技术作为计算机安全技术的一个重要组成部分,现在受到越来越广泛的关注,首先建立了一个计算机系统运行状况的隐马尔可夫模型(HMM),然后在此模型的基础上提出了一个用于计算机系统实时异常检测的算法,以及该模型的训练算法。这个算法的优点是准确率高,算法简单,占用的存储空间很小,适合用于在计算机系统上进行实时检测。 相似文献
12.
基于隐马尔可夫模型的异常检测 总被引:4,自引:1,他引:4
首先建立了一个计算机系统运行状况的隐马尔可夫模型 ,然后在此模型的基础上提出了一个用于计算机系统实时异常检测的算法 ,这个算法根据最大信息熵原理 ,通过比较固定长度系统行为序列的平均信息熵和一个预先给定的阈值来检测入侵行为 .论文还给出了该模型的训练算法 .这个检测算法的优点是准确率高 ,算法简单 ,占用的存储空间很小 ,适合用于在计算机系统上进行实时检测 相似文献
13.
14.
基于HMM的分布式拒绝服务攻击检测方法 总被引:6,自引:0,他引:6
在分布式拒绝服务(DDoS)攻击时,网络中数据包的统计特征会显示出异常.检测这种异常是一项重要的任务.一些检测方法基于数据包速率的假设,然而这种假设在一些情况下是不合理的.另一些方法基于IP地址和数据报长度的统计特征,但这些方法在IP地址欺骗攻击时检测率急剧下降.提出了一种基于隐马尔可夫模型(HMM)的DDoS异常检测方法.该方法集成了4种不同的检测模型以对付不同类型的攻击.通过从数据包中提取TCP标志位,UDP端口和ICMP类型及代码等属性信息建立相应的TCP,UDP和ICMP 的隐马尔可夫模型,用于描述正常情况下网络数据包序列的统计特征.然后用它来检测网络数据包序列,判断是否有DDoS攻击.实验结果显示该方法与其他同类方法相比通用性更好、检测率更高. 相似文献
15.
基于隐马尔可夫模型的入侵检测系统 总被引:4,自引:1,他引:4
首先介绍了基于隐马尔可夫模型(HMM)的入侵检测系统(IDS)框架,然后建立了一个计算机系统运行状况的隐马尔可夫模型,最后通过实验论述了该系统的工作过程。通过仅仅考虑基于攻击域知识的特权流事件来缩短建模时间并提高性能,从而使系统更加高效。实验表明,用这种方法建模的系统在不影响检测率的情况下,比传统的用所有数据建模大大地节省了模型训练的时间,降低了误报率。因此,适合用于在计算机系统上进行实时检测。 相似文献
16.
17.
18.
在网站的建设与维护中,为了提升服务器效率,加强安全保密性等原因需要区分普通用户和网络爬虫程序。但是一些不完善或恶意的设计使得针对爬虫程序的检测变得困难,这些爬虫程序不仅加重网站的负担,也危害了网络的安全。为了解决这一问题,本文提出一种利用行为模式进行检测的技术,采用隐马尔科夫模型描述行为模式,并使用Matlab仿真实现高精度的检测效果。结果表明,利用隐马尔科夫模型的检测技术可以实现高精确度和低错误率的网络爬虫检测。
相似文献
19.
基于隐马尔可夫模型的运动目标轨迹识别 * 总被引:3,自引:1,他引:3
引入改进的隐马尔可夫模型算法,针对真实场景中运动目标轨迹的复杂程度对各个轨迹模式类建立相应的隐马尔可夫模型,利用训练样本训练模型得到可靠的模型参数;计算测试样本对于各个模型的最大似然概率,选取最大概率值对应的轨迹模式类作为轨迹识别的结果,对两种场景中聚类后的轨迹进行训练与识别。实验结果表明,平均识别率分别达到87.76 %和94. 19%。 相似文献
20.
基于SVM-HMM混合模型的说话人确认 总被引:8,自引:0,他引:8
提出一个文本无关的说话人确认的算法。该算法将支持向量机(SVM)的输出通过Sigmoid函数和高斯模型转化为概率,并作为隐式马尔可夫模型(HMM)中各个隐状态的输出概率。由于HMM适于处理连续信号,SVM适于处理分类问题;同时,HMM更多地表达了类别内部的相似性,而SVM则很大程度上反映了类别间的差异,因而根据两者不同的侧重点,使其组合获得了很好的效果。 相似文献