首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
Our previous findings have shown that the developmental genes Pax7 and Pax3 are differentially methylated; the gene region that encodes the paired domain is hypomethylated, whereas the region that encodes the homeodomain is hypermethylated. For this reason, the known DNA sequence between the paired and homeoboxes was analysed for the presence of a conserved DNA motif to which a modifying protein could bind in order to direct the methylation or demethylation of surrounding gene sequences. The octapeptide-encoding region was found to contain several nucleotides that were highly conserved throughout the Pax gene family from phylogenetically distant species. The most conserved nucleotides are thought to comprise a motif TN8TCCT where N8=any combination of eight nucleotides. A conserved octapeptide-like-encoding sequence containing the TN8TCCT motif was also found in non-Pax genes of higher eukaryotes and in the non-coding strand of plants. Moreover, differential methylation seems to be associated with the presence of the TN8TCCT motif in p53 and the human oestrogen receptor genes. The presence of the TN8TCCT motif within an octapeptide-like-encoding sequence in human T-cell leukaemia virus type 1 might suggest that the putative recognition motif may have been introduced into various host genomes via some form of retroviral agent.  相似文献   

3.
Skeletal muscle has a remarkable capacity to regenerate after injury, although studies of muscle regeneration have heretofore been limited almost exclusively to limb musculature. Muscle precursor cells in skeletal muscle are responsible for the repair of damaged muscle. Heterogeneity exists in the growth and differentiation properties of muscle precursor cell (myoblast) populations throughout limb development but whether the muscle precursor cells differ among adult skeletal muscles is unknown. Such heterogeneity among myoblasts in the adult may give rise to skeletal muscles with different regenerative capacities. Here we compare the regenerative response of a masticatory muscle, the masseter, to that of limb muscles. After exogenous trauma (freeze or crush injuries), masseter muscle regenerated much less effectively than limb muscle. In limb muscle, normal architecture was restored 12 days after injury, whereas in masseter muscle, minimal regeneration occurred during the same time period. Indeed, at late time points, masseter muscles exhibited increased fibrous connective tissue in the region of damage, evidence of ineffective muscle regeneration. Similarly, in response to endogenous muscle injury due to a muscular dystrophy, widespread evidence of impaired regeneration was present in masseter muscle but not in limb muscle. To explore the cellular basis of these different regenerative capacities, we analyzed the myoblast populations of limb and masseter muscles both in vivo and in vitro. From in vivo analyses, the number of myoblasts in regenerating muscle was less in masseter compared with limb muscle. Assessment of population growth in vitro indicated that masseter myoblasts grow more slowly than limb myoblasts under identical conditions. We conclude that the impaired regeneration in masseter muscles is due to differences in the intrinsic myoblast populations compared to limb muscles.  相似文献   

4.
The purpose of this study was to investigate the association between elite endurance athlete (EEA) status and two restriction fragment length polymorphisms (RFLPs) at the muscle-specific creatine kinase (CKMM) gene locus. Genomic DNA was extracted from white blood cells or lymphoblastoid cell lines of 124 unrelated Caucasian male EEA (VO2max > 73 mL.kg-1.min-1) and 115 unrelated Caucasian sedentary male controls (SCON). The genetic polymorphism at the CKMM locus was detected by the polymerase chain reaction and DNA digestion with the NcoI and TaqI restriction endonucleases. The allelic frequencies for the NcoI and TaqI RFLPs were not different (P > 0.05) between EEA and SCON subjects. The three expected genotypes for CKMM-NcoI (1170/1170 bp, 1170/985 + 185 bp, and 985 + 185/985 + 185 bp) and CKMM-TaqI (1170/1170 bp, 1170/1020 + 150 bp, and 1020 + 50/1020 + 150 bp) were observed in the EEA and SCON groups. These genotype frequencies were in Hardy-Weinberg equilibrium, but they were not significantly (P > 0.05) different between the EEA and SCON. A strong (P < 0.001) linkage disequilibrium was detected among the NcoI and TaqI RFLPs in both EEA and SCON. These findings indicate that the skeletal muscle CK-NcoI and CK-TaqI gene polymorphisms are not associated with the elite endurance athlete status.  相似文献   

5.
It has been suggested that mast cells contribute to the phenotype of dystrophinopathies, but the mechanisms of their recruitment into the skeletal muscle remain hypothetical. The aim of this study is to quantify the presence of mast cells in muscle during the cellular events of myofibre degeneration and regeneration. For this purpose, we compare the mast cell profile in dystrophin-deficient mdx mice in which muscles exhibit spontaneous cycles of degeneration-regeneration from 3 weeks of age, with that in Swiss mice in which muscles were injured either by ischaemia or by notexin injection. Notexin is an A2-type phospholipase that rapidly disrupts myofibre plasma membranes, while ischaemia results in a slower process of degeneration. Both lesions are followed by a successful regeneration. In intact muscles, mast cell counts (mean +/- SEM/mm2) range from 1.8 +/- 1 to 4.3 +/- 1.6. The injection of notexin is far more potent in recruiting mast cells into damaged muscle than is ischaemia (118.5 +/- 13.0 vs 12.3 +/- 1.8/mm2). Thus we conclude that the early disruption of the myofibre membrane could elicit mast cell accumulation in skeletal muscle. This may explain the elevated number of mast cells observed in mdx muscles, as dystrophin deficiency is though to induce myofibre membrane leakage. On the other hand, mast cells are more numerous in muscles of young and adult mdx mice that are allowed to regenerate, than in muscles of older animals in which there is little regeneration and fibrosis develops. In injured muscles, the peak of mast cell number is at the onset of regeneration (by day 3 after notexin injection, and by day 11 after ischaemia), rather than during the phase of myofibre necrosis. Therefore, we suggest that the mast cells, through the effects of released mediators, could contribute to muscle regeneration.  相似文献   

6.
The laminin binding alpha 7 beta 1 integrin has been described as a major integrin in skeletal muscle. The RNA coding for the cytoplasmic domain of alpha 7 integrin undergoes alternative splicing to generate two major forms, denoted alpha 7A and alpha 7B. In the current paper, we have examined the developmental expression patterns of the alpha 7A and alpha 7B splice variants in the mouse. The alpha 7 integrin expression is compared to that of the nonintegrin laminin receptor dystroglycan and to that of laminin-alpha 1 and laminin-alpha 2 chains. Alpha 7A integrin was found by in situ hybridization to be specific to skeletal muscle. Antibodies specific for alpha 7B integrin and in situ hybridization revealed the presence of alpha 7 mRNA and alpha 7B protein in the E10 myotome and later in primary and secondary myotubes. In the heart, alpha 7B integrin was not detectable in the endocardium or myocardium during embryonic and fetal heart development. Northern blot analysis and immunohistochemistry revealed a postnatal induction of alpha 7B in the myocardium. In addition to striated muscle, alpha 7B integrin was localized to previously unreported nonmuscle locations such as a subset of vascular endothelia and restricted sites in the nervous system. Comparison of the alpha 7 integrin expression pattern with that of different laminin isoforms and dystroglycan revealed a coordinated temporal expression of dystroglycan, alpha 7 integrin, and laminin-alpha 2, but not laminin-alpha 1, in the forming skeletal muscle. We conclude that the alpha 7A and alpha 7B integrin variants are expressed in a developmentally regulated, tissue-specific pattern suggesting different functions for the two splice forms.  相似文献   

7.
Structural and functional disturbances closely associated with mitochondrial insufficiency are found in the nervous system elements, skeletal and smooth muscles, myocardium, kidneys, liver, gastrointestinal tract, endocrine glands, systems of hematopoiesis and immunity. Nosological and syndromic forms of mitochondrial pathology associated with mitochondrial or nuclear DNA mutations are characterized. The disease variants with symptomatic (may be secondary) or with presumable mitochondrial pathology are analyzed. For the pathologist the most reliable diagnostic criteria are skeletal muscle changes, and the "ragged red fibres" phenomenon first of all. The comparisons of the clinicobiochemical and morphological data are of the decisive importance.  相似文献   

8.
9.
The DNA methyltransferase (Mtase) from Thermus aquaticus (M.TaqI) catalyzes the transfer of the activated methyl group of S-adenosyl-L-methionine to the N6 position of adenine within the double-stranded DNA sequence 5'-TCGA-3'. To achieve catalysis M.TaqI flips the target adenine out of the DNA helix. On the basis of the three-dimensional structure of M.TaqI in complex with the cofactor and its structural homology to the C5-cytosine DNA Mtase from Haemophilus haemolyticus, Tyr 108 and Phe 196 were suggested to interact with the extrahelical adenine. The functional roles of these two aromatic amino acid residues in M.TaqI were investigated by mutational analysis. The obtained mutant Mtases were analyzed in an improved kinetic assay, and their ability to flip the target base was studied in a fluorescence-based assay using a duplex oligodeoxynucleotide containing the fluorescent base analogue 2-aminopurine at the target position. While the mutant Mtases containing the aromatic amino acid Trp at position 108 or 196 (Y108W and F196W) showed almost wild-type catalytic activity, the mutant Mtases with the nonaromatic amino acid Ala (Y108A and F196A) had a strongly reduced catalytic constant. Y108A was still able to flip the target base, whereas F196A was strongly impaired in base flipping. These results indicate that Phe 196 is important for stabilizing the extrahelical target adenine and suggest that Tyr 108 is involved in placing the extrahelical target base in an optimal position for methyl group transfer. Since both aromatic amino acids belong to the conserved motifs IV and XIII found in N6-adenine and N4-cytosine DNA Mtases as well as in N6-adenine RNA Mtases, a similar function of aromatic amino acid residues within these motifs is expected for the different Mtases.  相似文献   

10.
11.
12.
Functional recovery following motor nerve injury and repair is directly related to the degree of muscle atrophy that takes place during the period of nerve regeneration. The extent of this muscle atrophy is related to a number of factors including the accuracy of nerve repair; the distance through which the nerve must regenerate; the age of the patient; and the type of nerve injury and other associated tendon and soft tissue and bony damage. Atrophy of muscle that is always associated with nerve injury is a combination of disuse and degeneration. Our hypothesis proposed the following question: "Would continuous electrical stimulation of the denervated muscle during the period of nerve regeneration maintain the integrity of the muscle fibers and hence their potential functional capacity?" We have completed a series of animal studies (rabbit and canine models) in our laboratory using a completely implantable system to provide continuous muscle stimulation following nerve injury and microsurgical repair. In several different experiments, the nerves under study were cut and repaired at 4 and 12 cm from the muscles to study the effects of short- and long-term recovery. In all experiments, a beneficial effect was demonstrated with improved morphology and functional capacity of the reinnervated stimulated muscles when compared with nonstimulated controls. In addition, electrical stimulation using this implantable system could be applied for extended periods without evidence of discomfort in the experimental animals.  相似文献   

13.
T-tubules of skeletal muscle fibres easily transform into large vacuoles under the influence of various factors. These include osmotic shock produced by the efflux of small molecular weight molecules (e.g. glycerol), hypertonic shock, muscle fatigue and muscle damage. In most cases, vacuolation is reversible but the molecular mechanisms involved are not clear. Also, the functional role of reversible vacuolation has not been established. However, three possibilities may be considered. (1) Redistribution of ions and water between the cytoplasm and the extracellular space comprised by the T-system. Thus, the formation of large vacuoles may be a mechanisms for rapid osmoregulation that corresponds to regulated volume decrease in other types of cell. However, in our hands, inhibitors of various pathways that participate in volume regulation had no effect on reversible vacuolation. (2) Resealing of mechanical damage of the plasma membrane. This is usually accompanied by the development near the damaged membrane of numerous vacuoles which we have observed by confocal microscopy and use of a hydrophobic dye (RH414), to arise in part from T-tubules. (3) By confocal microscopy, it has also been shown that extracellular fluorescein dextran (Mr = 10,000), and both plasmid DNA (pUC18) and sonicated high molecular weight DNA stained with YOYO, enter vacuoles derived from T-tubules. This finding may indicate that reversible vacuolation, in the absence of membrane damage, could provide a pathway from the extracellular environment to the cytoplasm that is additional or complimentary to endocytosis; it may also be particularly relevant to the ability of muscle to be transfected by the direct injection of DNA. These several observations strongly indicate that the function of the T-system in skeletal muscle fibers is not restricted to excitation-contraction coupling.  相似文献   

14.
BACKGROUND: Laminin 2 is a major component of the basal lamina of skeletal muscle cells. It is a heterotrimer composed of 3 chains: merosin (laminin alpha 2 chain), beta 1, and gamma 1. Deficiency of merosin, with or without laminin beta 1 chain reduction, is associated with some forms of congenital muscular dystrophy. Deficient expression of laminin beta 1 chain is also associated with some cases of merosin-positive congenital muscular dystrophy. The expression of laminin 2 subunits has not been well studied in the skeletal muscle of limb-girdle muscular dystrophy (LGMD), nor has much attention been given to the significance of reduction of individual laminin 2 subunits, such as beta 1. OBJECTIVES: To examine the expression of laminin 2 subunits in skeletal muscle in patients with LGMD and to define the clinical features of patients with LGMD who have abnormal expression of laminin 2 subunits. METHODS: We studied muscle biopsy specimens from 18 patients with LGMD using immunofluorescence with antibodies against dystrophin C-terminus, beta-dystroglycan, alpha-sarcoglycan, gamma-sarcoglycan, and the laminin subunits merosin, beta 1, and gamma 1. Of the 18 biopsy specimens, 9 were available for electron microscopic examination of the muscle basement membrane. The clinical features associated with abnormal laminin beta 1 chain immunoreactivity were further described. RESULTS: Laminin beta 1 chain was either barely detectable or severely reduced in 3 cases of patients with LGMD in which the biopsy specimens showed normal staining with the other antibodies. Patients in all 3 cases had common clinical features consistent with a slowly progressive, adult-onset LGMD. Specimens from 2 of the 3 cases that were available for ultrastructural examination showed significant abnormalities of the muscle fiber basement membrane. CONCLUSIONS: Abnormal expression of laminin beta 1 chain without concomitant deficiency of alpha-sarcoglycan in skeletal muscle has not been previously described in LGMD. Reduced laminin beta 1 chain immunoreactivity may potentially serve as a marker for defining subsets of individuals with LGMD, in particular those with slowly progressive, adult-onset pelvifemoral presentation. The abnormality of muscle fiber basement membranes in specimens from cases that were available for ultrastructural study suggests that defects in the extracellular matrix may play a role in the pathogenesis of this subset of LGMD.  相似文献   

15.
The dy/dy mouse is an animal model for human merosin-negative congenital muscular dystrophy (CMD), which has been reported to have reduced or no expression of the basement membrane protein laminin alpha2. We here investigate various myogenic and nonmyogenic tissues of mature dy/dy and control 129ReJ mice histologically and for laminin alpha2 expression. In addition, expression patterns of laminin alpha1, alpha2, alpha4, and alpha5 chains, the interstitial proteins fibronectin and tenascin-C, and the adhesion molecules VCAM-1, ICAM-1, and alpha4 integrin were characterized in skeletal muscle of 1- and 7-day and mature (>6 weeks old) dy/dy and control 129ReJ mice. The laminin alpha2 chain remained detectable in myogenic tissues of dy/dy mice by immunofluorescence using two different monoclonal antibodies and by Northern blot analysis. However, laminin alpha2 expression was significantly reduced or not detectable in nonmyogenic tissues of dy/dy mice, including skin, lung, kidney, brain, thymus, and eye. Focal lesions were observed in mature skeletal muscle only, characterized by necrotic tissue, isolated VCAM-1- and ICAM-1-positive cells indicative of inflammatory processes, and regenerating muscle fibers surrounded by intense tenascin-C and fibronectin expression. In contrast to studies on human CMD muscle, laminin alpha1 was not detectable in either dy/dy or control skeletal muscle using immunofluorescence or Northern blot analysis. Immunofluorescence localized laminin alpha4 to basement membranes of blood vessels, the endoneurium of the intramuscular nerves, and the neuromuscular junction in skeletal muscle of 1- and 7-day-old dy/dy and control mice. In mature muscle, laminin alpha4 expression shifted to the perineurium of intramuscular nerves in both dy/dy and control mice. Furthermore, strong upregulation of laminin alpha4 in the basement membranes of blood vessels, the perineurium of intramuscular nerves, and of isolated regenerating muscle fibers in the dy/dy mice was apparent. Investigation of 1-day-old animals revealed expression of laminin alpha5 in skeletal muscle fiber basement membranes of dy/dy but not control animals. This difference between dy/dy and control animals was no longer apparent at 7 days after birth, indicating a temporary shift in expression pattern of laminin alpha5 in dy/dy animals. Analysis of the extracellular matrix components of 1- and 7-day-old dy/dy and control skeletal muscle revealed an early onset of the dystrophy, even before histopathological features of the disease were evident. Our data confirm the absence of laminin alpha1 chain in myogenic tissues of both dy/dy and control mice and suggest compensation for reduced laminin alpha2 in dy/dy skeletal muscle by laminin alpha4 and, in early development, also laminin alpha5. These results have significant ramifications in the diagnosis of human merosin-negative CMD.  相似文献   

16.
beta 1D is a recently identified isoform of the beta 1 integrin subunit selectively expressed in skeletal and cardiac muscles. In the present study we determined the temporal expression of beta 1D and its association with alpha subunits during mouse development. By immunohistochemistry and western blot analysis we demonstrated that beta 1D begins to be expressed in skeletal muscles of 17 days embryo (stage E17). Its level progressively increases reaching maximal values few days after birth and remaining high in adult mice. At earlier stages of development (E11-E17) the beta 1A isoform is expressed in skeletal muscle cells. After E17 beta 1A is downregulated and disappears from muscle fibers few days after birth. In cardiac muscle the regulation of the beta 1D expression is different: beta 1D and beta 1A are coexpressed in the heart of E11 embryo. Subsequently expression of beta 1A declines, while beta 1D increases until it becomes the unique beta 1 isoform in cardiomyocytes few days after birth. Previous studies (Belkin et al J. Cell Biol. 132: 211-226, 1996) demonstrated that beta 1D in adult mouse cardiomyocytes is exclusively associated with alpha 7B. Western blot analysis shows that alpha 7B starts to be expressed in the heart only at stage E17, while beta 1D is expressed already at E11 embryo, indicating that alpha subunits other than alpha 7 should associate with beta 1D in early developmental stages. To investigate this aspect, beta 1 associated alpha subunits were identified by western blotting from cardiomyocytes integrin complexes immunoprecipitated with alpha subunit specific antibodies. We found that, during cardiomyocyte development, beta 1D associates with several alpha subunits namely with alpha 5, alpha 6A and alpha 7B. In conclusion these data show that the expression of the beta 1D muscle specific integrin during development occurs much earlier in heart than in skeletal muscle and it can dimerize with different alpha subunits.  相似文献   

17.
Multiple mitochondrial DNA (mtDNA) deletions have been associated with aging in humans and monkeys. Since the inbred mouse strain, C57BL/6, has been extensively studied gerontologically, we sought to investigate its utility as a model for examining the importance of mtDNA deletions in aging. Using the polymerase chain reaction (PCR), we analyzed hind limb skeletal muscle from mice of three age groups (5, 16 and 25 months) for the presence of age-associated mtDNA deletions. We observed multiple mtDNA deletions in all three age groups. Further, the number of deletions detected per mouse increased greatly with advancing age.  相似文献   

18.
19.
Tetranectin, a plasminogen-binding protein with a C-type lectin domain, is found in both serum and the extracellular matrix. In the present study we report that tetranectin is closely associated with myogenesis during embryonic development, skeletal muscle regeneration, and muscle cell differentiation in vitro. We find that tetranectin expression coincides with muscle differentiation and maturation in the second half of gestation and further that tetranectin is enriched at the myotendinous and myofascial junctions. The tetranectin immunostaining declines after birth and no immunostaining is observed in normal adult muscle. However, during skeletal muscle regeneration induced by the intramuscular injection of the myotoxic anesthetic Marcaine, myoblasts, myotubes, and the stumps of damaged myofibers exhibit intense tetranectin immunostaining. Tetranectin is also present in regenerating muscle cells in dystrophic mdx mice. Murine C2C12 myogenic cells and pluripotent embryonic stem cells can undergo muscle cell differentiation in vitro. Tetranectin is not expressed in the undifferentiated myogenic cells, but during the progression of muscle differentiation, tetranectin mRNA is induced, and both cytoplasmic and cell surface tetranectin immunostaining become apparent. Finally, we demonstrate that while tetranectin mRNA is translated to a similar degree in developing limbs and lung, the protein does not seem to be tissue associated in the lung as it is in the limbs. This indicates that in some tissues, such as the limbs, tetranectin may function locally, whereas in other tissues, such as the lung, tetranectin production may be destined for body fluids. In summary, these results suggest that tetranectin is a matricellular protein and plays a role in myogenesis.  相似文献   

20.
In hind limb muscles, the aldolase A muscle-specific promoter is specifically expressed in glycolytic fast-twitch fibers. Here, we show that in addition, it is expressed at higher levels in trunk and limb muscles than in neck and head muscles independent of their fiber-type content. We have identified by analysis of transgenic mice a DNA element that is required for this differential expression and, to a lesser extent, for fiber-type specificity. We show that members of the nuclear receptor superfamily bind this element in skeletal muscle nuclear extracts. Interestingly, in gel mobility shift assays, different complexes were formed with this sequence in tongue nuclear extracts compared with limb or trunk muscle nuclear extracts. Therefore, binding of distinct nuclear receptors to a single regulatory sequence appears to be associated with the location-dependent expression of the aldolase A muscle-specific promoter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号