首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This note demonstrates that the design of a robust iterative learning control is straightforward for uncertain linear time-invariant systems satisfying the robust performance condition. It is shown that once a controller is designed to satisfy the well-known robust performance condition, a convergent updating rule involving the performance weighting function can be directly obtained. It is also shown that for a particular choice of this weighting function, one can achieve a perfect tracking. In the case where this choice is not allowable, a sufficient condition ensuring that the least upper bound of the /spl Lscr//sub 2/-norm of the final tracking error is less than the least upper bound of the /spl Lscr//sub 2/-norm of the initial tracking error is provided. This sufficient condition also guarantees that the infinity-norm of the final tracking error is less than the infinity-norm of the initial tracking error.  相似文献   

2.
For a class of linear discrete-time uncertain systems, a feedback feed-forward iterative learning control (ILC) scheme is proposed, which is comprised of an iterative learning controller and two current iteration feedback controllers. The iterative learning controller is used to improve the performance along the iteration direction and the feedback controllers are used to improve the performance along the time direction. First of all, the uncertain feedback feed-forward ILC system is presented by an uncertain two-dimensional Roesser model system. Then, two robust control schemes are proposed. One can ensure that the feedback feed-forward ILC system is bounded-input bounded-output stable along time direction, and the other can ensure that the feedback feed-forward ILC system is asymptotically stable along time direction. Both schemes can guarantee the system is robust monotonically convergent along the iteration direction. Third, the robust convergent sufficient conditions are given, which contains a linear matrix inequality (LMI). Moreover, the LMI can be used to determine the gain matrix of the feedback feed-forward iterative learning controller. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed schemes.  相似文献   

3.
提出了一种鲁棒最优迭代控制器的设计方法.对于任意有界的参考输出和不确定的初 始值,建立了由最优迭代学习控制器保证闭环系统有界输入有界输出(BIBO)鲁棒稳定性的充要 条件.实际应用中可根据不确定初始设定值和干扰对加权矩阵进行调整,从而保证闭环系统性能 随迭代过程的进行而得到改进.在注塑机控制中的应用验证了本文结论的有效性.  相似文献   

4.
To improve stability and convergence, feedback control is often incorporated with iterative learning control (ILC), resulting in feedback feed-forward ILC (FFILC). In this paper, a general form of FFILC is studied, comprising of two feedback controllers, a state feedback controller and a tracking error compensator, for the robustness and convergence along time direction, and an ILC for performance along the cycle direction. The integrated design of this FFILC scheme is transformed into a robust control problem of an uncertain 2D Roesser system. To describe the stability and convergence quantitatively along the time and the cycle direction, the concepts of robust stability and convergence along the two axes are introduced. A series of algorithms are established for the FFILC design. These algorithms allow the designer to balance and choose optimization objectives to meet the FFILC performance requirements. The applications to injection molding velocity control show the good effectiveness and feasibility of the proposed design methods.  相似文献   

5.
We study in this paper the problem of iterative feedback gains auto‐tuning for a class of nonlinear systems. For the class of input–output linearizable nonlinear systems with bounded additive uncertainties, we first design a nominal input–output linearization‐based robust controller that ensures global uniform boundedness of the output tracking error dynamics. Then, we complement the robust controller with a model‐free multi‐parametric extremum seeking control to iteratively auto‐tune the feedback gains. We analyze the stability of the whole controller, that is, the robust nonlinear controller combined with the multi‐parametric extremum seeking model‐free learning algorithm. We use numerical tests to demonstrate the performance of this method on a mechatronics example. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
In this article, a set of decentralised open-loop and closed-loop iterative learning controllers are embedded into the procedure of steady-state hierarchical optimisation utilising feedback information for large-scale industrial processes. The task of the learning controllers is to generate a sequence of upgraded control inputs iteratively to take responsibility for sequential step function-type control decisions, each of which is determined by the steady-state optimisation layer and then imposed on the real system for feedback information. In the learning control scheme, the learning gains are designated to be time-varying which are adjusted by virtue of expertise experiences-based IF-THEN rules, and the magnitudes of the learning control inputs are amplified by the sequential step function-type control decisions. The aim of learning schemes is to further effectively improve the transient performance. The convergence of the updating laws is deduced in the sense of Lebesgue 1-norm by taking advantage of the Hausdorff–Young inequality of convolution integral and the Hoelder inequality of Lebesgue norm. Numerical simulations manifest that both the open-loop and the closed-loop time-varying learning gain-based schemes can effectively decrease the overshoot, accelerate the rising speed and shorten the settling time, etc.  相似文献   

7.
This article presents a new strategy to design robust model matching dynamic output-feedback controllers that guarantee tracking response specifications, disturbance rejection and noise attenuation. The proposed synthesis methodology, based on a multi-objective optimisation problem, can be applied to uncertain continuous or discrete-time linear time-invariant systems with polytopic uncertainty, leading to both full-order and reduced-order robust-performance dynamic controllers. The objective functions represent the ?-norm of the difference between the closed-loop transfer function matrix, from the reference signals and the plant outputs and the reference model matrix, the ?-norm of the closed-loop transfer function matrix from the disturbances and the plant outputs and the ?2-norm of the closed-loop transfer function matrix from the measurement noises and the control inputs. An integral control action is also introduced in order to achieve zero steady-state error. In the case of MIMO systems, the proposed strategy can be applied to decouple the closed-loop control system choosing an appropriated reference model matrix. Two examples are presented to illustrate both SISO and MIMO systems control synthesis.  相似文献   

8.
数值界不确定性关联大系统分散鲁棒H控制   总被引:8,自引:0,他引:8  
针对一类状态阵,控制输入阵及关联阵中存在数值界不确定性的关联大系统,研究其分散鲁棒H∞状态反馈和输出反馈控制器设计问题.基于有界实引理,推导出了其存在分散鲁棒H∞控制器的充分条件,即一组矩阵不等式有解.利用Schur补引理,通过固定不同变量,提出了一种构建分散控制器的同伦迭代线性矩阵不等式方法.所获得的控制器使闭环大系统鲁棒稳定,并且达到给定的H∞性能指标.最后用数值例子说明了所提的设计方法的有效性.  相似文献   

9.
In this paper, the problem of robust regulation of robot manipulators using only position measurements is addressed. The main idea of the control design methodology is to use an observer to estimate simultaneously the velocity and the modeling error signal induced by model/system mismatches. The controller is obtained by replacing the velocity and the modeling error in an inverse dynamics feedback by their estimates, which leads to a certainty equivalence controller. The resulting controller has a PID‐type structure which, under least prior knowledge, reduces to the PI2D regulator studied in [20]. Moreover, the controller is endowed with a natural antireset windup (ARW) scheme to cope with control torque saturations. Regarding the closed‐loop behavior, it is proven that the region of attraction can be arbitrarily enlarged with high observer gains only, thus we prove semiglobal asymptotic stability. Our result supersedes previous works in the direction of performance estimates; specifically, it is also proven that the performance induced by a saturated inverse dynamics controller can be recovered by our PID‐type controller. In this sense, our work reveals some connections between PID‐type and inverse dynamics controllers.  相似文献   

10.
In order to cope with system disturbances in multi-phase batch processes with different dimensions, a hybrid robust control scheme of iterative learning control combined with feedback control is proposed in this paper. First, with a hybrid iterative learning control law designed by introducing the state error, the tracking error and the extended information, the multi-phase batch process is converted into a two-dimensional Fornasini–Marchesini (2D-FM) switched system with different dimensions. Second, a switching signal is designed using the average dwell-time method integrated with the related switching conditions to give sufficient conditions ensuring stable running for the system. Finally, the minimum running time of the subsystems and the control law gains are calculated by solving the linear matrix inequalities. Meanwhile, a compound 2D controller with robust performance is obtained, which includes a robust extended feedback control for ensuring the steady-state tracking error to converge rapidly. The application on an injection molding process displays the effectiveness and superiority of the proposed strategy.  相似文献   

11.
In this paper, we study the design problem of PID controllers for networked control systems (NCSs) with polyhedral uncertainties. The load disturbance and measurement noise are both taken into account in the modeling to better reflect the practical scenario. By using a novel technique, the design problem of PID controllers is converted into a design problem of output feedback controllers. Our goal of this paper is two‐fold: (1) To design the robust PID tracking controllers for practical models; (2) To develop the robust ?? PID control such that load and reference disturbances can be attenuated with a prescribed level. Sufficient conditions are derived by employing advanced techniques for achieving delay dependence. The proposed controller can be readily designed based on iterative suboptimal algorithms. Finally, four examples are presented to show the effectiveness of the proposed methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Design of the l 1-suboptimal robust controller for the linear discrete scalar object with constrained external perturbation and nonstructured operator perturbation in input and control was considered. The worst value of the l -norm of object output in the class of admissible perturbations was regarded as the performance index of the control system. The problem of designing the optimal robust controller was interpreted in the geometric terms, and an algorithm to design the suboptimal controller was proposed. A numerical example was used to demonstrate effciency of the algorithm, the ways to improving it, and the differences between the suboptimal robust controllers with structured and nonstructured operator perturbations.  相似文献   

13.
Aiming at the constrained polytopic uncertain system with energy‐bounded disturbance and unmeasurable states, a novel synthesis scheme to design the output feedback robust model predictive control(MPC)is put forward by using mixed H2/H design approach. The proposed scheme involves an offline design of a robust state observer using linear matrix inequalities(LMIs)and an online output feedback robust MPC algorithm using the estimated states in which the desired mixed objective robust output feedback controllers are cast into efficiently tractable LMI‐based convex optimization problems. In addition, the closed‐loop stability and the recursive feasibility of the proposed robust MPC are guaranteed through an appropriate reformulation of the estimation error bound (EEB). A numerical example subject to input constraints illustrates the effectiveness of the proposed controller.  相似文献   

14.
The work is concerned with the design and experimental evaluation of robust feedback systems for the control of ankle moments generated by the electrical stimulation of the human calf muscle. This is an important part of the problem of designing feedback controllers for stabilising the upright posture of people with spinal cord injuries while they stand. Robust controllers are designed using the polynomial approach to mixed sensitivity H feedback design. The approach was found to give a convenient and transparent way to design for performance. Moreover, the method gives a useful indicator of the robustness properties of a given design. This is highly useful for experimental controller “tuning”.  相似文献   

15.
In this paper, the H consensus control and H2 robust control synthesised with transient performance problems are investigated for a group of autonomous agents with linear or linearised dynamics. Based on the relative information between neighbouring agents and a subset of absolute information of the agents, distributed controllers are proposed for both H and H2 cases. Compared with the existing protocols, the one presented in this article focuses on improving the transient performance of the consensus problem. By using the tools from matrix analysis and robust control theory, conditions for the existence of controllers to those problems under an undirected communication topology are provided. Then, it is shown that the H2 performance limit of uncertain systems under a distributed controller equals the minimum H consensus index synthesised with transient performance of a single agent by using a state feedback controller, independent of the communication topology. Finally, a simulation example as an application in Raptor-90 helicopter is proposed to illustrate the effectiveness of the theoretical results.  相似文献   

16.
In this article, considering the design problem of decentralised H controller of singular systems, the two cases of controllers via measurement feedback are designed: one is precise controller, and the other is additive controller gain variation. The design procedures of the two cases of controllers are presented in terms of the solutions to generalised algebraic Riccati inequalities. The designed controllers in each case guarantee that closed-loop singular systems are admissible and with H -norm bound on disturbance attenuation. Finally, a numerical example to demonstrate the validity of the proposed approach is given.  相似文献   

17.
We address the design of structured controllers for networks of interconnected multivariable discrete-time subsystems. Different from existing approaches, where the structure of the controller is fixed a priori, we aim to design decentralised controllers such that each subsystem has a controller, which may not only use the output of its own associated subsystem, but also selected outputs of other subsystems. The total number of all those additional outputs used is to be minimised, while satisfying a guaranteed level of ?-performance. For the resulting non-convex optimisation problem, we first present a novel characterisation of the ?-performance of the closed-loop system by means of a system augmentation approach. Then, stimulated from compressive sensing theory, we propose a weighted ?1-minimisation to relax the ?0 objective function for structure optimisation. We develop an algorithm to deal with the relaxed decentralisation control problem, where the controller is obtained by iteratively solving convex optimisation problems. In addition, an iterative algorithm is developed to optimise the initial values such that the solvability of the decentralised control problem is further improved. Finally, an example is given to show the effectiveness of the proposed approaches.  相似文献   

18.
In this paper an H optimal, robust flight control system design for a supersonic aircraft has been described. Separate controllers are designed for longitudinal and lateral motions. A general two-degrees-of-freedom controller is proposed, where feedback control is designed for robust performance augmentation, while a series compensator is used to ensure that requisite handling qualities. Three alternative methods to achieve performance robustness have been discussed. The results obtained are very encouraging. It is hoped that this will equip the flight control engineers with an alternative to the conventional methods.  相似文献   

19.
The paper reports results on the design and analysis of the multivariable feedback Hinfin; robust system for plasma current, position and shape control in the fusion energy advanced tokamak (FEAT) developed in the International Thermonuclear Experimental Reactor (ITER) project. The system contains the fast loop with the SISO plasma vertical speed robust controller and the slow loop with the MIMO plasma current and shape robust controller. The goal is to study the resources of the system robustness to achieve a higher degree of the FEAT operation reliability. Two Hinfin; block diagonal controllers {K SISO, K MIMO} were designed by a mixed sensitivity approach in the framework of the disturbance rejection configuration. These controllers were compared with block diagonal decoupling, PI and LQG controllers at the set of FEAT key scenario points according to the multiple-criterion: nominal performance at minor disruptions, robust stability and robust performance. The Hinfin; controllers showed larger multivariable stability margin and better nominal performance.  相似文献   

20.
This paper proposes two robust inverse optimal control schemes for spacecraft with coupled translation and attitude dynamics in the presence of external disturbances. For the first controller, an inverse optimal control law is designed based on Sontag-type formula and the control Lyapunov function. Then a robust inverse optimal position and attitude controller is designed by using a new second-order integral sliding mode control method to combine a sliding mode control with the derived inverse optimal control. The global asymptotic stability of the proposed control law is proved by using the second method of Lyapunov. For the other control law, a nonlinear H inverse optimal controller for spacecraft position and attitude tracking motion is developed to achieve the design conditions of controller gains that the control law becomes suboptimal H state feedback control. The ultimate boundedness of system state is proved by using the Lyapunov stability theory. Both developed robust inverse optimal controllers can minimise a performance index and ensure the stability of the closed-loop system and external disturbance attenuation. An example of position and attitude tracking manoeuvres is presented and simulation results are included to show the performance of the proposed controllers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号