首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We consider the problem of spectrum trading with multiple licensed users (i.e., primary users) selling spectrum opportunities to multiple unlicensed users (i.e., secondary users). The secondary users can adapt the spectrum buying behavior (i.e., evolve) by observing the variations in price and quality of spectrum offered by the different primary users or primary service providers. The primary users or primary service providers can adjust their behavior in selling the spectrum opportunities to secondary users to achieve the highest utility. In this paper, we model the evolution and the dynamic behavior of secondary users using the theory of evolutionary game. An algorithm for the implementation of the evolution process of a secondary user is also presented. To model the competition among the primary users, a noncooperative game is formulated where the Nash equilibrium is considered as the solution (in terms of size of offered spectrum to the secondary users and spectrum price). For a primary user, an iterative algorithm for strategy adaptation to achieve the solution is presented. The proposed game-theoretic framework for modeling the interactions among multiple primary users (or service providers) and multiple secondary users is used to investigate network dynamics under different system parameter settings and under system perturbation.  相似文献   

2.
李彤  苗成林  吕军  史猛 《电讯技术》2019,59(4):375-382
为了解决多主用户和多次级用户共存网络的频谱资源分配问题,提出了一种基于斯塔科尔伯格(Stackelberg)博弈的动态频谱接入控制算法。该算法通过三阶段Stackelberg博弈模拟主用户频谱竞价,博弈过程中次级用户以最大化传输速率为目的接入主用户频谱,同时设计了一种迭代过程来求解纳什均衡。实验计算与结果分析证明了纳什均衡唯一存在性的充要条件,并说明了迭代过程的收敛性以及主用户最佳效用的影响因素。  相似文献   

3.
We address the problem of spectrum pricing in a cognitive radio network where multiple primary service providers compete with each other to offer spectrum access opportunities to the secondary users. By using an equilibrium pricing scheme, each of the primary service providers aims to maximize its profit under quality of service (QoS) constraint for primary users. We formulate this situation as an oligopoly market consisting of a few firms and a consumer. The QoS degradation of the primary services is considered as the cost in offering spectrum access to the secondary users. For the secondary users, we adopt a utility function to obtain the demand function. With a Bertrand game model, we analyze the impacts of several system parameters such as spectrum substitutability and channel quality on the Nash equilibrium (i.e., equilibrium pricing adopted by the primary services). We present distributed algorithms to obtain the solution for this dynamic game. The stability of the proposed dynamic game algorithms in terms of convergence to the Nash equilibrium is studied. However, the Nash equilibrium is not efficient in the sense that the total profit of the primary service providers is not maximized. An optimal solution to gain the highest total profit can be obtained. A collusion can be established among the primary services so that they gain higher profit than that for the Nash equilibrium. However, since one or more of the primary service providers may deviate from the optimal solution, a punishment mechanism may be applied to the deviating primary service provider. A repeated game among primary service providers is formulated to show that the collusion can be maintained if all of the primary service providers are aware of this punishment mechanism, and therefore, properly weight their profits to be obtained in the future.  相似文献   

4.
In multi‐hop cognitive radio networks, it is a challenge to improve the energy efficiency of the radio nodes. To address this challenge, in this paper, we propose a two‐level Stackelberg game model, where the primary users and the secondary users act as the leaders and the followers, respectively. Based on the game model, our proposed scheme not only considers the power allocation problem for secondary users but also takes into account the price of spectrum. First, we give the cognitive radio network model, and show how to set up the game theoretic model in multi‐hop cognitive radio networks. We then analyze this problem and show the existence and uniqueness of the Nash equilibrium point for the game. We also study the impact of the spectrum price of the primary users in the cognitive radio network and study how to select the best price for the primary users to maximize their own profit. Finally, we implement simulations to show the performance of our schemes. Our work gives an insight on how to improve the energy efficiency and allocate spectrum resources in multi‐hop cognitive radio networks. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
In cognitive radio networks, an important issue is to share the detected available spectrum among different secondary users to improve the network performance. Although some work has been done for dynamic spectrum access, the learning capability of cognitive radio networks is largely ignored in the previous work. In this paper, we propose a reinforcement-learning-based double auction algorithm aiming to improve the performance of dynamic spectrum access in cognitive radio networks. The dynamic spectrum access process is modeled as a double auction game. Based on the spectrum access history information, both primary users and secondary users can estimate the impact on their future rewards and then adapt their spectrum access or release strategies effectively to compete for channel opportunities. Simulation results show that the proposed reinforcement-learning-based double auction algorithm can significantly improve secondary users’ performance in terms of packet loss, bidding efficiency and transmission rate or opportunity access.  相似文献   

6.
在一类典型的认知无线网络中,多个次级用户通过支付费用竞争租用主用户授权频带的子带来传输信息。该文针对此类系统通过博弈论方法联合优化次级用户的发射功率和子带分配,及主用户的定价系数,同时最大化主用户和次级用户的收益。具体而言,该文基于逆向归纳法,将博弈问题分解为功率控制、子带分配和价格调整等3个耦合的子问题,并逐一求解,从而得到整个博弈的子博弈精炼纳什均衡。最后,该文基于理论分析结果,提出一种博弈均衡求解算法。仿真结果验证了该文的理论推导结果和该算法的有效性。  相似文献   

7.
杜海龙  邵霞  张卫党 《电讯技术》2022,62(7):922-928
采用随机几何和博弈论相结合的方法,研究了蜂窝网络中用户对于移动网络运营商(Wireless Service Provider, WSP)的选择与WSP频谱分配方案的制定之间的联系;构建了一个层次化的博弈框架来模拟用户和WSP之间的复杂交互,采用演化博弈模型来描述用户之间的竞争,用非合作博弈模型来描述WSP之间的竞争,用多领导者多跟随者的Stackelberg博弈模型来描述用户和运营商之间的循环依赖问题;分析了演化博弈模型中演化均衡的存在及其渐近稳定性,并在此基础上证明了非合作博弈模型中纳什均衡的存在。  相似文献   

8.
Dynamic spectrum leasing (DSL) has been proposed as a solution for better spectrum utilization. Most of the work focused on non-cooperative game to model primary/secondary users interactions in DSL approach. Some others introduced cooperative game just for secondary users (SUs). In this paper, both primary users (PUs) and SUs incentives and level of satisfactions are considered. Nash bargaining is developed with both PUs and SUs as bargainers. A simple pricing approach is introduced which makes the proposed method practically feasible. On one hand, SUs adjust their power regarding to price and tolerable interference which are announced by PU. On the other hand, PU adjusts its tolerable interference to maximize its profit. Simulation results verify the viability of proposed method.  相似文献   

9.
Economic Approaches for Cognitive Radio Networks: A Survey   总被引:1,自引:0,他引:1  
Efficient resource allocation is one of the key concerns of implementing cognitive radio networks. Game theory has been extensively used to study the strategic interactions between primary and secondary users for effective resource allocation. The concept of spectrum trading has introduced a new direction for the coexistence of primary and secondary users through economic benefits to primary users. The use of price theory and market theory from economics has played a vital role to facilitate economic models for spectrum trading. So, it is important to understand the feasibility of using economic approaches as well as to realize the technical challenges associated with them for implementation of cognitive radio networks. With this motivation, we present an extensive summary of the related work that use economic approaches such as game theory and/or price theory/market theory to model the behavior of primary and secondary users for spectrum sharing and discuss the associated issues. We also propose some open directions for future research on economic aspects of spectrum sharing in cognitive radio networks.  相似文献   

10.
为了解决认知无线电网络中的频谱分配问题,提出了一种基于用户体验质量的合作强化学习频谱分配算法,将认知网络中的次用户模拟为强化学习中的智能体,并在次用户间引入合作机制,新加入用户可以吸收借鉴其他用户的强化学习经验,能够以更快的速度获得最佳的频谱分配方案;并且在频谱分配过程中引入了主用户和次用户之间的价格博弈因素,允许主用...  相似文献   

11.
In recent years, cooperative communications have been widely used to improve the spectrum efficiency in cognitive radio networks. In this paper, we propose a new cooperative model involving primary and secondary users, where a primary transmitter may select a number of the secondary users to act as relays in order to maximize its data rate and to transmit at lower energy level, thereby saving energy and reducing interference at the secondary base station. The cooperative transmission is a multiple two‐hop relaying scheme, which guarantees an achievable data rate exceeding that in the direct transmission. In the proposed approach, the problem of joint relay selection and power allocation is formulated as a Stackelberg game, which converges to a unique optimal Nash equilibrium. Performance evaluation shows that this model offers benefit to both sides, where the primary users achieve higher data rate at lower energy consumption and the signal to interference plus noise ratio at the secondary base station is increased significantly. In addition, the results show that the proposed solution outperforms the investigated models in terms of achievable data rate.  相似文献   

12.
Extensive research in recent years has shown the benefits of cognitive radio technologies to improve the flexibility and efficiency of spectrum utilization. This new communication paradigm, however, requires a well-designed spectrum allocation mechanism. In this paper, we propose an auction framework for cognitive radio networks to allow unlicensed secondary users (SUs) to share the available spectrum of licensed primary users (PUs) fairly and efficiently, subject to the interference temperature constraint at each PU. To study the competition among SUs, we formulate a non-cooperative multiple-PU multiple-SU auction game and study the structure of the resulting equilibrium by solving a non-continuous two-dimensional optimization problem, including the existence, uniqueness of the equilibrium and the convergence to the equilibrium in the two auctions. A distributed algorithm is developed in which each SU updates its strategy based on local information to converge to the equilibrium. We also analyze the revenue allocation among PUs and propose an algorithm to set the prices under the guideline that the revenue of each PU should be proportional to its resource. We then extend the proposed auction framework to the more challenging scenario with free spectrum bands. We develop an algorithm based on the no-regret learning to reach a correlated equilibrium of the auction game. The proposed algorithm, which can be implemented distributedly based on local observation, is especially suited in decentralized adaptive learning environments as cognitive radio networks. Finally, through numerical experiments, we demonstrate the effectiveness of the proposed auction framework in achieving high efficiency and fairness in spectrum allocation.  相似文献   

13.
Bargaining based mechanism for sharing spectrum between radio access networks (RANs) belonging to multioperators is studied, to improve spectrum utilization efficiency and maximize network revenue.By introducing an intelligent agent, each RAN has the ability, which includes trading information exchanging, final decision making, and so on, to trade the spectrum with other RANs.The proposed inter-operator spectrum sharing mechanism is modeled as an infinite-horizon bargaining game with incomplete information, and the resulting bargaining game has unique sequential equilibrium.Consequently, the implementation is refined based on the analysis.Simulation results show that the proposed mechanism outperforms the conventional fixed spectrum management (FSM) method in network revenue, spectrum efficiency, and call blocking rate.  相似文献   

14.
Spectrum Leasing to Cooperating Secondary Ad Hoc Networks   总被引:2,自引:0,他引:2  
The concept of cognitive radio (or secondary spectrum access) is currently under investigation as a promising paradigm to achieve efficient use of the frequency resource by allowing the coexistence of licensed (primary) and unlicensed (secondary) users in the same bandwidth. According to the property-rights model of cognitive radio, the primary terminals own a given bandwidth and may decide to lease it for a fraction of time to secondary nodes in exchange for appropriate remuneration. In this paper, we propose and analyze an implementation of this framework, whereby a primary link has the possibility to lease the owned spectrum to an ad hoc network of secondary nodes in exchange for cooperation in the form of distributed space-time coding. On one hand, the primary link attempts to maximize its quality of service in terms of either rate or probability of outage, accounting for the possible contribution from cooperation. On the other hand, nodes in the secondary ad hoc network compete among themselves for transmission within the leased time-slot following a distributed power control mechanism. The investigated model is conveniently cast in the framework of Stackelberg games. We consider both a baseline scenario with full channel state information and information-theoretic transmission strategies, and a more practical model with long-term channel state information and randomized distributed space-time coding. Analysis and numerical results show that spectrum leasing based on trading secondary spectrum access for cooperation is a promising framework for cognitive radio.  相似文献   

15.
Cognitive networks are designed based on the concept of dynamic and intelligent network management, characterizing the feature of self-sensing, self-configuration, self-learning, self-consciousness etc. In this paper, focusing on the spectrum sharing and competition, we propose a novel OODA (Orient-Observe-Decide-Act) based behavior modeling methodology to illustrate spectrum access problem in the heterogenous cognitive network which consists of multiple primary networks (PN, i.e. licensed networks) and multiple secondary networks (SN, i.e. unlicensed networks). Two different utility functions are designed for primary users and secondary users respectively based on marketing mechanism to formulate the decide module mathematically. Also, we adopt expectation and learning process in the utility design which considers the variance of channels, transmission forecasting, afore trading histories and etc. A double auction based spectrum trading scheme is established and implemented in two scenarios assorted from the supply-and-demand relationship i.e. LPMS (Less PNs and More SNs) and MPLS (More PNs and Less SNs). After the discussion of the Bayesian Nash Equilibrium, numerical results with four bidding strategies of SNs are presented to reinforce the effectiveness of the proposed utility evaluation based decision modules under two scenarios. Besides, we prove that the proposed behavior model based spectrum access method maintains frequency efficiency comparable with traditional centralized cognitive access approaches and reduces the network deployment cost.  相似文献   

16.
张小盈  朱琦 《信号处理》2020,36(1):77-83
随着移动设备的增多,认知无线电技术诞生,而频谱感知是认知无线电技术中的重要一环。本文将群智感知和频谱感知结合,提出了一种基于Stackelberg博弈的多任务协作频谱感知算法。该算法将融合中心(平台)与次用户分别建模为Stackelberg博弈领导者和从属者。在领导者博弈中,平台给次用户发布最优的报酬值以获得最佳的效用;在从属者博弈中,本文着重考虑了剩余能量对次用户的影响,次用户在平台给的报酬下改变感知时间以获得最优的效用。仿真结果表明,该算法可以提高融合中心对频谱的检测概率。   相似文献   

17.
Dynamic spectrum access has been proposed to address the spectrum scarcity. Based on this access mode, secondary users are allowed to opportunistically operate when primary users are absent. Secondary Users are, however, required to relinquish the spectrum upon return of the incumbent spectrum holder. Although it improves spectrum utility, opportunistic spectrum access limits secondary users’ access to exogenous spectrum holes vacated by primary users. We argue that spectrum holes should be endogenous, enabled by incentives to incumbent users to increase spectrum availability, while mitigating risk. To this end, we take a different perspective on dynamic spectrum sharing and propose a coopetive framework, whereby primary and secondary users engage in a cooperative, yet competitive, auction-driven spectrum sharing to enhance spectrum usage. In this framework, the primary users’spectrum is organized in three bands, namely exclusive usage, usage right and management right bands. Based on this structure, spectrum is traded as financial options to increase trading flexibility and capture the value primary and secondary users attach to spectrum access and usage. Spectrum trading between primary and secondary users is formalized as a utility maximization problem. Approximate solutions to this problem are derived and their performance is analyzed. The results show that spectrum trading, which combines revocable and exclusive leasing, provides higher utilities for both primary and secondary users.  相似文献   

18.
Cognitive radio (CR) is a newly developed technology for increasing spectral efficiency in wireless communication systems. In the CR networks, there exist two traditional spectrum‐sharing technologies called spectrum overlay and spectrum underlay. A new hybrid overlay/underlay paradigm has also been discussed in the literature. In this work, we create a unified spectrum sensing and throughput analysis model, which is suitable for overlay, underlay, and hybrid overlay/underlay paradigms in the CR networks. In the proposed model, the energy detection scheme is employed for the spectrum sensing in the network in which the co‐channel interference is present among primary users and secondary users (SUs). The SUs' throughput in the proposed CR system model is then analyzed. The simulations are also carried out for demonstrating the performance of overlay, underlay, and hybrid overlay/underlay paradigms. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
基于系统动力学的网络安全攻防演化博弈模型   总被引:3,自引:0,他引:3  
基于非合作演化博弈理论,提出了在攻防双方信息不对称情况下具有学习机制的攻防演化博弈模型。结合攻防效用函数,对非合作演化博弈攻防过程中的纳什均衡点的存在性和唯一性进行论证。用系统动力学建立演化博弈模型进行仿真,仿真结果表明引入第三方动态惩罚策略的演化博弈模型存在纳什均衡,指出在网络安全技术进步的同时,发展攻击者追踪技术,增强网络攻击行为可审查性,实现动态惩罚,是解决网络安全问题的重要途径。  相似文献   

20.
According to the property rights model of cognitive radio,primary users who own the spectral resource have the right to lease or trade part of it to secondary users in exchange for appropriate profit. In this paper,an implementation of this framework is investigated,where a primary link can lease the owned spectrum to secondary nodes in exchange for cooperation (relaying). A novel pricing model is proposed that enables the trading between spectrum and cooperation. Based on the demand of secondary nodes,the primary link attempts to maximize its quality of service (QoS) by setting the price of spectrum. Taking the price asked by primary link,the secondary nodes aim to obtain most profits by deciding the amount of spectrum to buy and then pay for it by cooperative transmission. The investigated model is conveniently cast in the framework of seller/buyer (Stackelberg) games. Analysis and numerical results show that our pricing model is effective and practical for spectrum leasing based on trading spectral resource for cooperation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号