首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents new research results of the DARPA-funded ONRAMP consortium on the next generation Internet to study efficient WDM-based network architectures and protocols for supporting broadband services in regional access networks. In particular, we present new efficient scheduling algorithms for bandwidth sharing in WDM distribution networks. The current ONRAMP distribution network architecture has a tree topology with each leaf node (e.g., a router or workstation) sharing access to the root node of the tree, which corresponds to an access node in the feeder network. Our model allows a leaf node to use one or more fixed-tuned or tunable transceivers; moreover, different leaf nodes can support different subsets of wavelengths depending on their expected traffic volumes. An important goal of ONRAMP is to support bandwidth-on-demand services with QoS guarantee over WDM. As a first step toward this goal, we have developed several fast scheduling algorithms for flexible bandwidth reservations in a WDM distribution network. The scheduling algorithms can provably guarantee any bandwidth reservations pattern that does not overbook network resources, i.e., bandwidth reservation (throughput) up to 100% network capacity can be supported.  相似文献   

2.
We present several fast, practical linear-complexity scheduling algorithms that enable provision of various quality-of-service (QoS) guarantees in an input-queued switch with no speedup. Specifically, our algorithms provide per-virtual-circuit transmission rate and cell delay guarantees using a credit-based bandwidth reservation scheme. Our algorithms also provide approximate max-min fair sharing of unreserved switch capacity. The novelties of our algorithms derive from judicious choices of edge weights in a bipartite matching problem. The edge weights are certain functions of the amount and waiting times of queued cells and credits received by a virtual circuit. By using a linear-complexity variation of the well-known stable-marriage matching algorithm, we present theoretical proofs and demonstrate by simulations that the edge weights are bounded. This implies various QoS guarantees or contracts about bandwidth allocations and cell delays. Network management can then provide these contracts to the clients. We present several different algorithms of varied complexity and performance (as measured by the usefulness of each algorithm's contract). While most of this paper is devoted to the study of “soft” guarantees, a few “hard” guarantees can also be proved rigorously for some of our algorithms. As can be expected, the provable guarantees are weaker than the observed performance bounds in simulations. Although our algorithms are designed for switches with no speedup, we also derive upper bounds on the minimal buffer requirement in the output queues necessary to prevent buffer overflow when our algorithms are used in switches with speedup larger than one  相似文献   

3.
With the projected growth in demand for bandwidth and telecommunication services will come the requirement for a multiservice backbone network of far greater efficiency, capacity, and flexibility than ISDN (integrated-services digital network) is able to satisfy. This class of network has been termed the broadband ISDN, and the design of the switching nodes of such a network is the subject of much research. The author investigates one possible solution. The design and performance, for multiservice traffic, is presented for a fast packet switch based on a nonbuffered, multistage interconnection network. It is shown that for an implementation in current CMOS technology, operating at 50 MHz, switches with a total traffic capacity of up to 150 Gb/s can be constructed. Furthermore, if the reserved service traffic load is limited on each input port to a maximum of 80% of switch port saturation, then a maximum delay across the switch of on the order of 100 μs can be guaranteed, for 99% of the reserved service traffic, regardless of the unreserved service traffic load  相似文献   

4.
In this article we investigate the problem of efficiently provisioning connections of different bandwidth granularities in a heterogeneous WDM mesh network through dynamic traffic grooming schemes under traffic engineering principles. Due to the huge amount of traffic a WDM backbone network can support and the large geographic area it can cover, constructing and upgrading such an optical WDM network can be costly. Hence, it is extremely important for network operators to apply traffic engineering strategies to cost-effectively support different bandwidth granularity services using only the appropriate amount of network resources. This requires an optical WDM network to have multigranularity switching capability, and such a network tends to be a multivendor heterogeneous network. However, WDM network heterogeneity increases the difficulty and challenge of efficient traffic provisioning. In this article we present different TE issues that need to be carefully considered in such an optical WDM network, and propose possible solutions and extensions for the generalized multiprotocol label switching optical network control plane. We extend an existing generic graph model to perform efficient traffic grooming and achieve different TE objectives through simple shortest path computation algorithms. We show that our approach is very practical and very suitable for traffic engineering in a heterogeneous multigranularity optical WDM mesh network.  相似文献   

5.
Ethernet Passive Optical Network (EPON) is viewed by many as an attractive solution to the first mile problem. With the rapidly increasing number of user application, the capacity of current EPON has quickly become insufficient and upgrading its architecture with the wavelength division multiplexing (WDM) technology has become a natural choice. On the other hand, with more and more multimedia applications emerging in the network, providing good quality of service (QoS) to various classes of traffic is a challenge. In this paper, we propose a two-level WDM EPON upgrade solution which implements two main functions: efficient capacity scaling with bandwidth sharing at the first level, and deterministic QoS provisioning at the second level. At the first level, the scheme ensures that a minimum number of wavelengths are used for scaling. At the second level, an integrated scheme including the admission control policies and scheduling discipline is developed to guarantee deterministic QoS for multiple classes of traffic. Three different admission control policies, in particular fixed-proportional, non-preemptive and preemptive admission control, are proposed and a complete study of their unique features is presented. The simulation results show that they could all guarantee deterministic delay bounds for bursty traffic.  相似文献   

6.
With the widespread deployment of Internet protocol/wavelength division multiplexing (IP/WDM) networks, it becomes necessary to develop traffic engineering (TE) solutions that can effectively exploit WDM reconfigurability. More importantly, experimental work on reconfiguring lightpath topology over testbed IP/WDM networks is needed urgently to push the technology forward to operational networks. This paper presents a performance and testbed study of topology reconfiguration for IP/WDM networks. IP/WDM TE can be fulfilled in two fashions, overlay vs. integrated, which drives the network control software, e.g., routing and signaling protocols, and selects the corresponding network architecture model, e.g., overlay or peer-to-peer. We present a traffic management framework for IP over reconfigurable WDM networks. Three "one-hop traffic maximization"-oriented heuristic algorithms for lightpath topology design are introduced. A reconfiguration migration algorithm to minimize network impact is presented. To verify the performance of the topology design algorithms, we have conducted extensive simulation study. The simulation results show that the topologies designed by the reconfiguration algorithms outperform the fixed topology with throughput gain as well as average hop-distance reduction. We describe the testbed network and software architecture developed in the Defense Advanced Research Projects Agency (DARPA) Next Generation Internet (NGI) SuperNet Network Control and Management project and report the TE experiments conducted over the testbed.  相似文献   

7.
We develop a general model, called latency-rate servers (ℒℛ servers), for the analysis of traffic scheduling algorithms in broadband packet networks. The behavior of an ℒℛ server is determined by two parameters-the latency and the allocated rate. Several well-known scheduling algorithms, such as weighted fair queueing, virtualclock, self-clocked fair queueing, weighted round robin, and deficit round robin, belong to the class of ℒℛ servers. We derive tight upper bounds on the end-to-end delay, internal burstiness, and buffer requirements of individual sessions in an arbitrary network of ℒℛ servers in terms of the latencies of the individual schedulers in the network, when the session traffic is shaped by a token bucket. The theory of ℒℛ servers enables computation of tight upper bounds on end-to-end delay and buffer requirements in a heterogeneous network, where individual servers may support different scheduling architectures and under different traffic models  相似文献   

8.
Supporting rate guarantee and fair access for bursty data trafficin W-CDMA   总被引:1,自引:0,他引:1  
This paper presents a new protocol for statistical multiplexing of bursty data traffic in the forward (base-to-mobile) link of a wireless wideband code division multiple access (W-CDMA) system using orthogonal variable spreading factor (OVSF) codes. At the heart of the protocol is an efficient scheduling algorithm that dynamically assigns an OVSF code to a mobile user on a timeslot-by-timeslot basis and allows many users with bursty traffic to share a limited set of OVSF codes. An important feature of our protocol is that it can provide a heterogeneous data rate guarantee to each mobile user and fully utilize the system capacity. Moreover, the unreserved bandwidth of the network can be shared fairly among competing mobile users  相似文献   

9.
Next generation internet optical network for regional access using multi-wavelength protocols (NGI ONRAMP) is a pre-competitive consortium sponsored by DARPA. Its mission is to develop architectures, protocols, and algorithms for wavelength division multiplexing (WDM)-based regional access networks that will effectively support the NGI. A reconfigurable WDM test bed is being built to demonstrate some of the key thrusts of the consortium, including dynamic service provisioning and optical flow switching, service protection in the optical domain, medium access control protocols, and network control and management geared for the efficient transport of Internet traffic over WDM networks. The ONRAMP test bed will consist of a feeder network connecting via access nodes to distribution networks on which the end users reside. ONRAMP network reconfiguration is enabled by access nodes that contain both optical and electronic switching components, allowing data traffic to be routed all-optically through the network or to be switched and aggregated by electronic Internet protocol (IP) routers. This paper describes the goals and basic architecture of the ONRAMP test bed, as well as the design, construction, and characterization of the network access nodes. To illustrate test bed operation, we demonstrate optical flow switching over the test bed that achieves Gb/s throughput of TCP data between end user workstations  相似文献   

10.
The main motivation for developing the MetaRing architecture was to increase the throughput of a ring-based local area network beyond its single link capacity by means of spatial bandwidth reuse. We describe and evaluate a protocol for integrating two types of traffic on the MetaRing architecture. Synchronous (reserved or real-time) traffic which is periodic and requires a connection set-up and will have guaranteed bandwidth and bounded delay, and asynchronous or bursty traffic with no real-time constraints that can use the remainder of the bandwidth in a fair manner. The integration mechanism is functionally equivalent to the timed-token function in FDDI, which is a shared media ring protocol. Simulation results are also presented to show the effects of the fairness and flow control signals on the performance of the network  相似文献   

11.
Future-generation wireless packet networks will support multimedia applications with diverse QoS requirements. Much of the research on scheduling algorithms has been focused on hard QoS provisioning of integrated services. Although these algorithms give hard delay bounds, their stringent requirements sacrifice the potential statistical multiplexing performance and flexibility of the packet-switched network. Furthermore, the complexities of the algorithms often make them impractical for wireless networks. There is a need to develop a packet scheduling scheme for wireless packet-switched networks that provides soft QoS guarantees for heterogeneous traffic, and is also simple to implement and manage. This article proposes token bank fair queuing (TBFQ), a soft scheduling algorithm that possesses these qualities. This algorithm is work-conserving and has a complexity of O(1). We focus on packet scheduling on a reservation-based TDMA/TDD wireless channel to service integrated real-time traffic. The TBFQ scheduling mechanism integrates the policing and servicing functions, and keeps track of the usage of each connection. We address the impact of TBFQ on mean packet delay, violation probability, and bandwidth utilization. We also demonstrate that due to its soft provisioning capabilities, the TBFQ performs rather well even when traffic conditions deviate from the established contracts.  相似文献   

12.
Subscriber stations located in different places encounter various interferences in an IEEE 802.16 network, resulting in that their communication channels experience varying channel conditions. Thus, an excellent bandwidth allocation algorithm should not only satisfy various QoS required by heterogeneous traffic, but also consider the channel quality to maximize bandwidth utilization. In this paper, a bandwidth allocation algorithm with channel quality awareness and QoS guarantee, called CQQ, is proposed. CQQ not only satisfies each connection's QoS requirement, but also dynamically adjusts the downlink/uplink bandwidth to match current downlink/uplink traffic ratio. CQQ allocates more bandwidth to the connections having better channel quality by applying weighted fair queuing strategy to raise the bandwidth usage. CQQ provides lower delay violation ratio and higher goodput than the previous algorithms, as observed from the simulation results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
This paper analyses an optical network architecture composed by an arrangement of nodes equipped with multi-granular optical cross-connects (MG-OXCs) in addition to the usual optical cross-connects (OXCs). Then, selected network nodes can perform both waveband as well as traffic grooming operations and our goal is to assess the improvement on network performance brought by these additional capabilities. Specifically, the influence of the MG-OXC multi-granularity on the blocking probability is evaluated for 16 classes of service over a network based on the NSFNet topology. A mechanism of fairness in bandwidth capacity is also added to the connection admission control to manage the blocking probabilities of all kind of bandwidth requirements. Comprehensive computational simulation are carried out to compare eight distinct node architectures, showing that an adequate combination of waveband and single-wavelength ports of the MG-OXCs and OXCs allow a more efficient operation of a WDM optical network carrying multi-rate traffic.  相似文献   

14.
QoS support for integrated services over CATV   总被引:1,自引:0,他引:1  
Cable TV has emerged as a promising access network infrastructure for the delivery of voice, video, and high-speed data traffic. A central issue in the design of protocols for CATV networks is to support different levels of QoS for diverse user applications. While CATV service providers and equipment have standardized, in the so-called MCNS protocol, the basic network architecture and interfaces, issues in the MAC layer for QoS support are likely to be left for differentiation in vendor products. This article first presents an overview of the basic CATV network architectural assumptions and the set of QoS requirements for supporting integrated services over CATV. It then discusses a MAC layer scheduling protocol that can efficiently multiplex constant bit rate traffic, such as voice over IP with guaranteed delay bound, and best-effort traffic, such as data services with minimum bit rate guarantee, while achieving fairness on any excess available bandwidth. The performance of this algorithm is illustrated by simulation results using Opnet. We also discuss a dynamic polling mechanism that enhances the link utilization while preserving delay bounds for latency-critical traffic  相似文献   

15.
A maximal matching algorithm switches packets through a cross-bar with the speed-up of two without blocking them. Namely, traffic will go through the cross-bar controlled by a maximal matching algorithm if its outputs are not overloaded. Consequently, bandwidth reservations with delay guarantees are simple to provide. We propose a protocol for distributed bandwidth reservations, where users check the communication availability among themselves. It will be also shown that maximal matching algorithms cannot utilize full cross-bar capacity for some particular traffic patterns.  相似文献   

16.
Multicast routing and bandwidth dimensioning in overlay networks   总被引:20,自引:0,他引:20  
Multicast services can be provided either as a basic network service or as an application-layer service. Higher level multicast implementations often provide more sophisticated features and can provide multicast services at places where no network layer support is available. Overlay multicast networks offer an intermediate option, potentially combining the flexibility and advanced features of application layer multicast with the greater efficiency of network layer multicast. In this paper, we introduce the multicast routing problem specific to the overlay network environment and the related capacity assignment problem for overlay network planning. Our main contributions are the design of several routing algorithms that optimize the end-to-end delay and the interface bandwidth usage at the multicast service nodes within the overlay network. The interface bandwidth is typically a key resource for an overlay network provider, and needs to be carefully managed in order to maximize the number of users that can be served. Through simulations, we evaluate the performance of these algorithms under various traffic conditions and on various network topologies. The results show that our approach is cost-effective and robust under traffic variations.  相似文献   

17.
The exponentially growing number of Internet users armed with emerging multimedia Internet applications is continuously thirsty for more network capacity. Wavelength-division multiplexing networks that directly support IP-the so-called IP over WDM architecture-have the appropriate characteristics to quench this bandwidth thirst. As everyday life increasingly relies on telecommunication services, users become more and more demanding, and connection reliability is currently as critical as high capacity. Both IP and WDM layers can fulfil this need by providing various resilient schemes to protect users' traffic from disruptions due to network faults. This article first reviews the most common restoration and protection schemes available at the IP and WDM layers. These schemes may be present concurrently in the IP over WDM architecture, with the resilient mechanism of each connection specifically chosen as a function of the overall cost, application requirements, and management complexity. The article describes a versatile heuristic based on simulated annealing that may be adopted to optimize the concurrent use of IP restoration and WDM protection schemes in the same (mesh) network. The proposed heuristic allows varying the percentage of traffic protected by the WDM layer and that of traffic relying on IP restoration, taking into account topology constraints and network cost minimization. An additional feature of the proposed heuristic is the potential to trade solution optimality for computational time, thus yielding fast solutions in support of interactive design.  相似文献   

18.
In Wavelength Division Multiplexing (WDM) networks, the huge capacity of wavelength channels is generally much larger than the bandwidth requirement of individual traffic streams from network users. Traffic grooming techniques aggregate low-bandwidth traffic streams onto high-bandwidth wavelength channels. In this paper, we study the optimization problem of grooming the static traffic in mesh Synchronous Optical Network (SONET) over WDM networks. The problem is formulated as a constrained integer linear programming problem and an innovative optimization objective is developed as network profit optimization. The routing cost in the SONET and WDM layers as well as the revenue generated by accepting SONET traffic demands are modelled. Through the optimization process, SONET traffic demands will be selectively accepted based on the profit (i.e., the excess of revenue over network cost) they generate. Consiering the complexity of the network optimization problem, a decomposition approach using Lagrangian relaxation is proposed. The overall relaxed dual problem is decomposed into routing and wavelength assignment and SONET traffic routing sub-problems. The subgradient approach is used to optimize the derived dual function by updating the Lagrange multipliers. To generate a feasible network routing scheme, a heuristic algorithm is proposed based on the dual solution. A systematic approach to obtain theoretical performance bounds is presented for an arbitrary topology mesh network. This is the first time that such theoretical performance bounds are obtained for SONET traffic grooming in mesh topology networks. The optimization results of sample networks indicate that the roposed algorithm achieves good sub-optimal solutions. Finally, the influence of various network parameters is studied.  相似文献   

19.
Providing quality-of-service guarantees in both cell- and packet-based networks requires the use of a scheduling algorithm in the switches and network interfaces. These algorithms need to be implemented in hardware in a high-speed switch. The authors present a number of approaches to implement scheduling algorithms in hardware. They begin by presenting a general methodology for the design of timestamp-based fair queuing algorithms that provide the same bounds on end-to-end delay and fairness as those of weighted fair queuing, yet have efficient hardware implementations. Based on this general methodology, the authors describe two specific algorithms, frame-based fair queuing and starting potential-based fair queuing, and discuss illustrative implementations in hardware. These algorithms may be used in both cell switches and packet switches with variable-size packets. A methodology for combining a traffic shaper with this class of fair queuing schedulers is also presented for use in network interface devices, such as an ATM segmentation and reassembly device  相似文献   

20.
In a packet switching network, congestion is unavoidable and affects the quality of real‐time traffic with such problems as delay and packet loss. Packet fair queuing (PFQ) algorithms are well‐known solutions for quality‐of‐service (QoS) guarantee by packet scheduling. Our approach is different from previous algorithms in that it uses hardware time achieved by sampling a counter triggered by a periodic clock signal. This clock signal can be provided to all the modules of a routing system to get synchronization. In this architecture, a variant of the PFQ algorithm, called digitized delay queuing (DDQ), can be distributed on many line interface modules. We derive the delay bounds in a single processor system and in a distributed architecture. The definition of traffic contribution improves the simplicity of the mathematical models. The effect of different time between modules in a distributed architecture is the key idea for understanding the delay behavior of a routing system. The number of bins required for the DDQ algorithm is also derived to make the system configuration clear. The analytical models developed in this paper form the basis of improvement and application to a combined input and output queuing (CIOQ) router architecture for a higher speed QoS network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号