首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell-free extracts of cellobiose-grown cells of the hyperthermophile Pyrococcus furiosus contain very high activities (19.8 U/mg) of a beta-glucosidase. The cytoplasmic enzyme was purified 22-fold to apparent homogeneity, indicating that the enzyme comprises nearly 5% of the total cell protein. The native beta-glucosidase has a molecular mass of 230 +/- 20 kDa, composed of 58 +/- 2-kDa subunits. The enzyme has a pI of 4.40. Thiol groups are not essential for activity, nor is the enzyme dependent on divalent cations or a high ionic strength. The enzyme shows optimum activity at pH 5.0 and 102-105 degrees C. From Lineweaver-Burk plots, Vmax values of 470 U/mg and 700 U/mg were found for cellobiose (Km = 20 mM) and p-nitrophenyl-beta-D-glucopyranoside (Km = 0.15 mM), respectively. The purified enzyme also exhibits high beta-galactosidase activity and beta-xylosidase activity, but shows no activity towards alpha-linked disaccharides or beta-linked polymers, like cellulose. The purified beta-glucosidase shows a remarkable thermostability with a half life of 85 h at 100 degrees C and 13 h at 110 degrees C.  相似文献   

2.
3.
2-Hydroxyisonicotinate dehydrogenase isolated from Mycobacterium sp. INA1   总被引:1,自引:0,他引:1  
The objective of this study was to identify factors associated with poor mobilization of peripheral blood progenitor cells (PBPCs) or delayed platelet engraftment after high-dose therapy and autologous stem cell transplantation in patients with lymphoma. Fifty-eight patients with Hodgkin's disease or non-Hodgkin's lymphoma underwent PBPC transplantation as the "best available therapy" at Memorial Sloan-Kettering Cancer Center (New York, NY) between 1993 and 1995. PBPCs were mobilized with either granulocyte colony-stimulating factor (G-CSF) alone (n = 19) or G-CSF following combination chemotherapy (n = 39). Forty-eight of these patients underwent a PBPC transplant, receiving a conditioning regimen containing cyclophosphamide, etoposide, and either total body irradiation, total lymphoid irradiation, or carmustine. A median number of 4.6 x 10(6) CD34+ cells/kg were obtained with a median of three leukapheresis procedures. Mobilization of PBPCs using chemotherapy plus G-CSF was superior to G-CSF alone (6.7 x 10(6) versus 1.5 x 10(6) CD34+ cells/kg; P = 0.0002). Poorer mobilization of progenitor cells was observed in patients who had previously received stem cell-toxic chemotherapy, including (a) nitrogen mustard, procarbazine, melphalan, carmustine or > 7.5 g of cytarabine chemotherapy premobilization (2.0 x 10(6) versus 6.0 x 10(6) CD34+ cells/kg; P = 0.005), or (b) > or = 11 cycles of any previous chemotherapy (2.6 x 10(6) versus 6.7 x 10(6) CD34+ cells/kg; P = 0.02). Platelet recovery to > 20,000/microliter was delayed in patients who received < 2.0 x 10(6) CD34+ cells (median, 13 versus 22 days; P = 0.06). Patients who received > or = 11 cycles of chemotherapy prior to PBPC mobilization tended to have delayed platelet recovery to > 20,000/microliter and to require more platelet transfusions than less extensively pretreated patients (median, 13.5 versus 23.5 days; P = 0.15; median number of platelet transfusion episodes, 13 versus 9; P = 0.17). These data suggest that current strategies to mobilize PBPCs may be suboptimal in patients who have received either stem cell-toxic chemotherapy or > or = 11 cycles of chemotherapy prior to PBPC mobilization. Alternative approaches, such as ex vivo expansion or the use of other growth factors in addition to G-CSF, may improve mobilization of progenitor cells for PBPC transplantation.  相似文献   

4.
A novel bacterial rhodopsin was identified in Haloarcula japonica strain TR-1. The gene encoding the bacterial rhodopsin was cloned and sequenced. The structural gene consisted of an open reading frame of 750 nucleotides encoding 250 amino acids. The deduced amino acid sequence of the Ha. japonica bacterial rhodopsin showed the highest homology to those of cruxrhodopsins.  相似文献   

5.
Recombinant Clostridium difficile glutamate dehydrogenase (L-glutamate:NAD oxidoreductase, EC 1.4.1.2) was purified 177-fold to electrophoretic homogeneity with a 62% recovery through a four-step procedure involving gel filtration and ion-exchange and dye affinity chromatography. The approximate molecular weights of the native enzyme by gel filtration and subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were consistent with a hexameric structure for the purified enzyme. The enzyme-catalyzed glutamate oxidation was an NAD-dependent sequential process in which NADP could not be substituted as coenzyme. Several dinucleotide analogs of NAD structurally altered in either the pyridine or the purine moiety were observed to function as coenzymes when substituted for NAD. Nicotinamide mononucleotide did not serve as a coenzyme for glutamate oxidation. Product inhibition by NADH was competitive with respect to NAD. In deadend inhibition studies, adenosine diphosphoribose was shown to be an effective coenzyme-competitive inhibitor.  相似文献   

6.
A NAD-dependent, oxygen-labile alcohol dehydrogenase was purified from Desulfovibrio gigas. It was decameric, with subunits of M(r) 43,000. The best substrates were ethanol (Km, 0.15 mM) and 1-propanol (Km, 0.28 mM). N-terminal amino acid sequence analysis showed that the enzyme belongs to the same family of alcohol dehydrogenases as Zymomonas mobilis ADH2 and Bacillus methanolicus MDH.  相似文献   

7.
8.
Beta-N-Acetylgalactosaminidase [EC 3.2.1.53] was purified to homogeneity from the culture media of Bacillus sp. AT173-1. The enzyme has a molecular weight of 48,000 as estimated by SDS-PAGE under reducing conditions and an isoelectric point of 4.3. The enzyme requires dithiothreitol as an activator and is most active at pH 6.0. Analysis of its substrate specificity using 2-aminopyridine-labeled oligosaccharides as substrates revealed the enzyme specifically hydrolyzes beta-N-acetylgalactosaminyl linkages of GalNAcbeta1-4Galbeta1-4Glc, GalNAcbeta1-3Gal alpha1-4Galbeta1-4Glc, and N-glycans terminating with beta-N-acetylgalactosamine residues but not those with beta-N-acetylglucosamine residues. The enzyme is thus a novel beta-N-acetylgalactosaminidase with practically no beta-N-acetylglucosaminidase activity.  相似文献   

9.
D-beta-Hydroxybutyrate dehydrogenase (BDH), a lipid-requiring enzyme, has been cloned into pUC18, expressed in Escherichia coli, and purified to homogeneity. The apoenzyme, i.e., the enzyme devoid of phospholipid, has no activity, but can be activated by phospholipid to a specific activity of 129 mumol/(min.mg). The functional properties of the enzyme expressed in E. coli were compared with the enzyme purified from rat liver. The specific activities, kinetic parameters, and phospholipid activation profiles were virtually identical. These results indicate that the expression of the enzyme in E. coli is a viable method for producing active functional BDH and should allow for the production of specifically altered BDH molecules.  相似文献   

10.
While studying the bile acid synthetic pathway of hamsters, we discovered an NADP+-dependent liver microsomal 7alpha-hydroxycholesterol dehydrogenase (7alpha-HCD) activity that was not observed in rat liver microsomal fractions. The hamster liver microsomal 7alpha-HCD was purified to homogeneity using 2', 5'-ADP and cholic acid-agarose affinity chromatography. 7alpha-HCD displayed a molecular weight of approximately 34,000 on SDS-polyacrylamide gel electrophoresis; it is an intrinsic membrane protein of the hamster liver endoplasmic reticulum and exists as a multimeric aggregate in pure form. Partial N-terminal amino acid sequence analysis showed that 7alpha-HCD had high sequence similarity to human 11beta-hydroxysteroid dehydrogenase (11beta-HSD; 24/30 amino acid identity). The Km values for corticosterone and 7alpha-hydroxycholesterol were 1.2 and 1.9 microM, respectively, for purified 7alpha-HCD; both reactions displayed identical Vmax values (approximately 170 nmol/min/mg of protein). The IC50 of carbenoxolone, a competitive inhibitor of 11beta-HSD, was 75 nM for 7alpha-hydroxycholesterol dehydrogenation and 210 nM for corticosterone dehydrogenation. The tissue-specific expression in hamster was as follows: adrenal >/= liver > kidney > testis > brain > lung. Microsomal 7alpha-HCD is uniquely expressed in hamster liver and to some extent in human liver but not in rat liver. Western blot analysis with two antibodies elicited against an N-terminal peptide of the human 11beta-HSD and purified hamster liver 7alpha-HCD, respectively, suggested the presence of multiple forms of 7alpha-HCD in hamster liver, most likely due to the existence of a family of 11beta-HSD proteins. Since 7-oxocholesterol is a potent inhibitor of cholesterol 7alpha-hydroxylase, alternative mechanisms for regulation of bile acid synthesis may exist in human and hamster liver due to production of this metabolite and its potential as an oxysterol.  相似文献   

11.
A new extremely halophilic chemoorganotrophic bacterium (strain H200T [T = type strain]) was isolated from the hypersaline sediments of Retba Lake in Senegal. This organism was a sluggishly motile, rod-shaped, non-spore-forming, gram-negative, obligate anaerobe that grew optimally at 40 degrees C in the presence of 180 to 200 g of NaCl per liter. The DNA base composition was 32 mol% guanine plus cytosine. The fermentation products from glucose were ethanol, acetate, H2, and CO2. Yeast extract was required for growth. The fermentable substrates included D-fructose, galactose, D-xylose, cellobiose, lactose, maltose, sucrose, starch, D-mannitol, glycerol, and Casamino Acids. On the basis of the results of a 16S rRNA sequence analysis, strain H200T was found to be related to Haloanaerobium species. The 16S rRNA sequence of strain H200T differed from the sequences of the three previously described Haloanaerobium species, and strain H200T also differed from these organisms in its NaCl range for growth (60 to 340 g/liter); strain H200T grew in the presence of the highest NaCl concentration recorded for any halophilic anaerobic organism, including the three previously described Haloanaerobium species. We propose that strain H200T (= DSM 10165) belongs to a new Haloanaerobium species, Haloanaerobium lacusroseus.  相似文献   

12.
Pyrroloquinoline-quinone(PQQ)-free quinohaemoprotein ethanol dehydrogenase (QH-EDH) apoenzyme was isolated from ethanol-grown Comamonas testosteroni. The purified apoenzyme, showing a single band of 71 kDa on native gel electrophoresis, could be only partially converted into active holoenzyme by addition of PQQ in the presence of calcium ions. In addition to a band with a molecular mass of 71 kDa, additional bands of 51 kDa and 25 kDa were observed with SDS/PAGE. Analysis of the N-terminal sequences of the bands and comparison with the DNA sequence of the gene, suggested that the latter two originate from the former one, due to scission occurring at a specific site between two vicinal residues in the protein chain. The extent of scission appeared to increase during growth of the organism. After addition of PQQ to apoenzyme, holoenzyme and nicked, inactive enzyme could be separated. Holoenzyme prepared in this way was found to contain equimolar amounts of PQQ, Ca2+ and covalently bound haem. EPR spectra of fully oxidized apo-QH-EDH and holo-QH-EDH showed g values typical for low-spin haem c proteins. In partially oxidized holo-QH-EDH an organic radical signal attributed to the semiquinone form of PQQ was observed. Binding of PQQ leads to conformational changes, as reflected by changes of spectral and chromatographic properties. Reconstitution of apoenzyme with PQQ analogues resulted in a decreased activity and enantioselectivity for the oxidation of chiral alcohols. Compared with PQQ, analogues with a large substituent had a lower affinity for the apoenzyme. Results with other analogues indicated that possession of the o-quinone/o-quinol moiety is not essential for binding but it is for activity.  相似文献   

13.
Because of recent agricultural policy to suppress rice production, a rather rare situation occurred in one prefecture in Japan that rice and winter wheat were grown in fields neighboring each other, rice being grown from May to October, and wheat from November to June of the next year. Grains of such rice and wheat were analyzed for cadmium (Cd) and lead (Pb) by atomic absorption spectrometry, and eight nutrient minerals by inductively coupled plasma emission spectrometry. Concentrations of nutrient minerals were higher in wheat grains than in unpolished rice grains (without husk), and similar trends were observed also for Cd and Pb. Flour obtained by milling of the wheat grains had significantly less Cd and nutrient minerals than the mother grains, and such reduction was also observed by treatment of unpolished rice to polished grain. Pb concentration was also reduced by the polishing of rice. Pb in wheat flour appeared to be higher than that in whole grain. Comparisons between the final edible forms of the two cereals showed that K and Cu were higher in polished rice than in wheat flour and that such may also be the case for Cd, whereas the reverse was the case for Ca and Fe, and possibly for Pb.  相似文献   

14.
Human chorionic gonadotropin (hCG) in first trimester placental cells is composed of immature alpha- and beta-subunits containing only N-linked high-mannose sugar chains. Intracellular immature intermediates are accumulated in rough endoplasmic reticulum in much greater quantity than mature hCG composed of mature subunits. We have previously shown that this immature hCG might be bound to other protein(s), including an ATP-binding protein, forming high molecular weight-hCG (HMW-hCG), which is not aggregate of immature hCG alone. To identify the ATP-binding protein forming the HMW-hCG in detail, proteins in HMW-hCG preparation were photoaffinity-labeled with 8-azido-[alpha-32P]ATP. Autoradiography followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that the labeled protein with M(r) = 78000 was immunoprecipitated with any antibody against alpha-subunit, beta-subunit and hCG, indicating that this protein is bound to immature hCG. Furthermore, to determine whether some other proteins associate to form HMW-hCG, we purified HMW-hCG without breakdown to its components using columns of DE52, Heparin-Sepharose and Sephacryl S-300. As the final step of the purification, HMW-hCG was allowed to adsorb on a column of ATP-agarose and anti-hCG IgG-agarose, respectively. SDS-PAGE analysis of eluted proteins from the columns bound to the respective column via the constituent of HMW-hCG, such as ATP-binding protein or immature hCG, showed four common protein bands with molecular weights of 78000, 43000, 28000 and 20000. The protein with M(r) = 43000 was stained with any antibody against alpha-subunit, beta-subunit and hCG, indicating it to be immature hCG. The protein band with M(r) = 78000, which might correspond to the ATP-binding protein described above, was stained with anti-heat shock protein 70 (HSP70) monoclonal antibody. To confirm the association of immature hCG and HSP70-like protein, immature hCG preparation was incubated with HSP70-like protein purified from placental extracts. The molecular weight change of immature hCG appeared to increase by this incubation and was close to HMW-hCG, but not exactly the same. These results suggest that immature hCG intermediate exists as HMW-hCG containing HSP70-like protein, which has ATP-binding capacity, and two other proteins in first trimester placental cells.  相似文献   

15.
G-DNA, a polymorphic family of four-stranded DNA structures, has been proposed to play roles in a variety of biological processes including telomere function, meiotic recombination and gene regulation. Here we report the purification and cloning of TGP1, a G-DNA specific binding protein from Tetrahymena thermophila. TGP1 was purified by three-column chromatographies, including a G-DNA affinity column. Two major proteins (approximately 80 and approximately 40 kDa) were present in the most highly purified column fraction. Renaturation experiments showed that the approximately 80 kDa protein contains TGP1 activity. Biochemical characterization showed that TGP1 is a G-DNA specific binding protein with a preference for parallel G-DNAs. The TGP1/DNA complex has a dissociation constant (Kd) of approximately 2.2 x 10(-8) M and TGP1 can form supershift in gel mobility shift assays. The cDNA coding TGP1 was cloned and sequenced based upon an internal peptide sequence obtained from the approximately 80 kDa protein. Sequence analyses showed that TGP1 is a basic protein with a pI of 10.58, and contains two extensively hydrophilic and basic domains. Homology searches revealed that TGP1 is a novel protein sharing weak similarities with a number of proteins.  相似文献   

16.
The synthetic chelating agent EDTA can mobilize radionuclides and heavy metals in the environment. Biodegradation of EDTA should reduce this mobilization. Although several bacteria have been reported to mineralize EDTA, little is known about the biochemistry of EDTA degradation. Understanding the biochemistry will facilitate the removal of EDTA from the environment. EDTA-degrading activities were detected in cell extracts of bacterium BNC1 when flavin mononucleotide (FMN), NADH, and O2 were present. The degradative enzyme system was separated into two different enzymes, EDTA monooxygenase and an FMN reductase. EDTA monooxygenase oxidized EDTA to glyoxylate and ethylenediaminetriacetate (ED3A), with the coconsumption of FMNH2 and O2. The FMN reductase provided EDTA monooxygenase with FMNH2 by reducing FMN with NADH. The FMN reductase was successfully substituted in the assay mixture by other FMN reductases. EDTA monooxygenase was purified to greater than 95% homogeneity and had a single polypeptide with a molecular weight of 45,000. The enzyme oxidized both EDTA complexed with various metal ions and uncomplexed EDTA. The optimal conditions for activity were pH 7.8 and 35 degreesC. Kms were 34.1 microM for uncomplexed EDTA and 8.5 microM for MgEDTA2-; this difference in Km indicates that the enzyme has greater affinity for MgEDTA2-. The enzyme also catalyzed the release of glyoxylate from nitrilotriacetate and diethylenetriaminepentaacetate. EDTA monooxygenase belongs to a small group of FMNH2-utilizing monooxygenases that attack carbon-nitrogen, carbon-sulfur, and carbon-carbon double bonds.  相似文献   

17.
A relatively thermostable 22-kDa endoribonuclease (MAR1) was purified more than 10,000-fold from a mitochondrial extract of Leishmania tarentolae and the gene cloned. The purified nuclease has a Km of 100-145 +/- 33 nM and a Vmax of 1.8-2.9 +/- 2 nmol/min, depending on the RNA substrate, and yields a 3'-OH and a 5'-phosphate. Cleavage was limited to several specific sites in the substrate RNAs tested, but cleavage of pre-edited RNAs was generally independent of the addition of cognate guide RNA. The MAR1 gene was expressed in Escherichia coli or in L. tarentolae cells, and the recombinant protein was affinity-purified. The cleavage specificity of the recombinant enzyme from L. tarentolae was identical to that of the native enzyme. The single copy MAR1 gene maps to an 820-kilobase pair chromosome and contains an open reading frame of 579 nucleotides. The 18-amino acid N-terminal sequence shows characteristics of an uncleaved mitochondrial targeting sequence. Data base searching revealed two homologues of MAR1 corresponding to unidentified open reading frames in Caenorhabditis elegans (GenBankTM accession number Z69637) and Archaeoglobus fulgidus (GenBankTM accession number AE000943). The function of MAR1 in mitochondrial RNA metabolism in L. tarentolae remains to be determined.  相似文献   

18.
During radiology's early years, many people dedicated their lives to developing practical applications for the x-ray. A leader among them was Ed C. Jerman, author of the first textbook on radiographic technique and founder of the organization known today as the American Society of Radiologic Technologists. Through the first three decades of this century, Jerman worked diligently to bring legitimacy, organization and technical expertise to the fledgling profession of radiologic technology. In 1995, the centennial of the x-ray's discovery, it is appropriate to reflect on the many contributions of the man who is remembered today as the father of modern radiologic technology.  相似文献   

19.
The genes (mdh) encoding malate dehydrogenase (MDH) from the mesophile Chlorobium vibrioforme and the moderate thermophile C. tepidum were cloned and sequenced, and the complete amino acid sequences were deduced. When the region upstream of mdh was analyzed, a sequence with high homology to an operon encoding ribosomal proteins from Escherichia coli was found. Each mdh gene consists of a 930-bp open reading frame and encodes 310 amino acid residues, corresponding to a subunit weight of 33,200 Da for the dimeric enzyme. The amino acid sequence identity of the two MDHs is 86%. Homology searches using the primary structures of the two MDHs revealed significant sequence similarity to lactate dehydrogenases. A hybrid mdh was constructed from the 3' part of mdh from C. tepidum and the 5' part of mdh from C. vibrioforme. The thermostabilities of the hybrid enzyme and of MDH from C. vibrioforme and C. tepidum were compared.  相似文献   

20.
The glyceraldehyde-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) was purified to homogeneity from electric organ of Electrophorus electricus (L.) by a hydrophobic chromatography method on deacetylcolchicine-Sepharose. The purification resulted in a 162 fold increase in specific activity of the GAPDH and final yield was approximately 37%. The purified enzyme showed a single band in SDS-PAGE, with an apparent molecular mass of 36 kDa. The purity of the colchicine-Sepharose isolated material was analysed by isoelectrophocusing and immunoblotting using a heterologous rabbit serum anti-GAPDH. Sequence analysis of the 40-N-terminal amino acids, determined by Edman degradation, revealed its identity to other GAPDHs proteins being the largest number of identical amino acids to lobster (92.5%), rabbit muscle (85%) and human liver (80%) GAPDH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号