首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Here we report that synthetic HIV-1 Tat protein, immobilized on a solid substrate, up-regulates the surface expression of the CXC-chemokine receptor 4 (CXCR4), but not of the CC-chemokine receptor 5 in purified populations of primary resting CD4+ T cells. The Tat-mediated increase of CXCR4 occurred in a well-defined range of concentrations (1-10 nM of immobilized Tat) and time period (4-8 h postincubation). Moreover, the increase of CXCR4 was accompanied by an increased entry of the HXB2 T cell line-tropic (X4-tropic), but not of the BaL macrophage-tropic strain of HIV-1. The ability of Tat to up-regulate CXCR4 expression was abrogated by the protein synthesis inhibitor cycloheximide, clearly indicating the requirement of de novo synthesis. As Tat protein is actively released by HIV-1 infected cells, our data indicate a potentially important role for extracellular Tat in rendering bystander CD4+ T cells more susceptible to infection with X4-tropic HIV-1 isolates.  相似文献   

2.
Erythropoietin receptor activation by a ligand-induced conformation change   总被引:1,自引:0,他引:1  
Erythropoietin and other cytokine receptors are thought to be activated through hormone-induced dimerization and autophosphorylation of JAK kinases associated with the receptor intracellular domains. An in vivo protein fragment complementation assay was used to obtain evidence for an alternative mechanism in which unliganded erythropoietin receptor dimers exist in a conformation that prevents activation of JAK2 but then undergo a ligand-induced conformation change that allows JAK2 to be activated. These results are consistent with crystallographic evidence of distinct dimeric configurations for unliganded and ligand-bound forms of the erythropoietin receptor.  相似文献   

3.
4.
5.
The environmentally sensitive and cysteine reactive fluorescent probe, IANBD, was used to monitor ligand-induced structural changes in the beta2 adrenergic receptor (beta2AR) by fluorescent spectroscopy. We found that agonists caused a dose-dependent and reversible decrease in fluorescence from the purified IANBD-labeled beta2AR. This suggested that agonists promote a conformational change in the receptor that leads to an increase in the polarity of the environment around one or more IANBD labeled cysteines. The wildtype receptor contains eight free cysteines and mutagenesis and peptide mapping experiments have indicated that several of these sites are accessible for chemical derivatization. Thus, to identify the cysteine(s) involved in the agonist-induced change in fluorescence and thereby map agonist-induced conformational changes in the beta2AR, we generated a series of mutant receptors having limited numbers of cysteines available for fluorescent labeling. Fluorescence spectroscopy analysis of the purified and site-selectively IANBD-labeled mutants showed that IANBD labeled 125Cys and 285Cys are responsible for the observed changes in fluorescence consistent with movements of TM III and VI in response to agonist binding.  相似文献   

6.
Gonadotropin receptors are unique members of the seven-transmembrane (TM), G protein-coupled receptor family with a large extracellular (EC) sequence forming the high-affinity ligand binding domain. In a patient with Leydig cell hypoplasia, we identified a mutant LH receptor that is truncated at TM5. This protein retains limited ligand binding ability but cannot mediate cAMP responses. To study interactions between receptor fragments defective in either ligand binding or signal transduction, we co-expressed this truncated receptor together with a chimeric receptor containing the EC region of the FSH receptor and the TM region of the LH receptor. Although the chimeric receptor could not respond to human chorionic gonadotropin in producing cAMP, co-expression with the truncated LH receptor allowed partial restoration of ligand signaling through intermolecular interactions. In addition, co-expression of the same truncated LH receptor with an N-terminally truncated LH receptor that lacked the EC ligand binding domain also partially restored ligand signaling. Further shortening of the TM region in the mutant receptor found in the patient indicated that the EC domain and TM1 were sufficient for interactions with the N terminally truncated receptor. In contrast, co-expression of the N terminally truncated receptor together with cell-associated or soluble EC region of the LH receptor did not allow ligand signaling. Unlike thrombin receptors, co-expression of the anchored EC region of the LH receptor together with the N-terminally truncated receptor did not allow ligand signaling despite moderate levels of human chorionic gonadotropin binding in transfected cells. These studies demonstrate that the co-expression of binding (+)/signaling (-) and binding (-)/signaling (+) receptor fragments partially restores ligand-induced signal generation and indicate the importance of TM1 of the LH receptor in the proper orientation of the EC ligand binding domain.  相似文献   

7.
Previous studies on the Khat plant (Catha edulis, Celastraceae) illustrated the importance of using freshly harvested young shoots and leaves such that cathinone, the principle active component and Schedule I controlled drug contained within the plant, could be suitably isolated and identified. The purpose of this work was to develop a quantitative analytical technique for the determination of cathinone. The proposed method is based on treating the reductant cathinone with copper(II)-neocuproine reagent in sodium acetate-buffered medium followed by measuring the absorbance of the copper(I)-neocuproine complex at 455 nm. The calibration plot is linear in the range 0.08-25 micrograms ml-1 with a detection limit of 0.08 microgram ml-1. The precision of the method, expressed as the relative standard deviation, is 1.35% for 10 micrograms ml-1 cathinone. Good recoveries have been obtained in applying the method to the analysis of cathinone in Khat leaves.  相似文献   

8.
The GLUT4 system in muscle and fat cells plays an important role in whole-body glucose homeostasis. Insulin stimulates the translocation of GLUT4 from an intracellular storage compartment to the cell surface. The nature of this compartment remains largely unknown. We review recent studies describing the biogenesis and molecular constituents of the GLUT4 storage compartment and conclude that it is segregated from the endosomal and biosynthetic pathways. Further, we present evidence to suggest that the GLUT4 storage compartment moves directly to the plasma membrane in response to insulin and, hence, is analogous to small synaptic vesicles in neurons. We propose that the GLUT4 storage compartment be referred to as GLUT4 storage vesicles or GSVs.  相似文献   

9.
Binding of dimeric immunoglobulin (Ig)A to the polymeric Ig receptor (pIgR) stimulates transcytosis of pIgR across epithelial cells. Through the generation of a series of pIgR chimeric constructs, we have tested the ability of ligand to promote receptor dimerization and the subsequent role of receptor dimerization on its intracellular trafficking. Using the cytoplasmic domain of the T cell receptor-zeta chain as a sensitive indicator of receptor oligomerization, we show that a pIgR:zeta chimeric receptor expressed in Jurkat cells initiates a zeta-specific signal transduction cascade when exposed to dimeric or tetrameric IgA, but not when exposed to monomeric IgA. In addition, we replaced the pIgR's transmembrane domain with that of glycophorin A to force dimerization or with a mutant glycophorin transmembrane domain to prevent dimerization. Forcing dimerization stimulated transcytosis of the chimera, whereas preventing dimerization abolished ligand-stimulated transcytosis. We conclude that binding of dimeric IgA to the pIgR induces its dimerization and that this dimerization is necessary and sufficient to stimulate pIgR transcytosis.  相似文献   

10.
Hepatocyte growth factor (HGF) is a heterodimeric molecule composed of the alpha-chain containing the N-terminal hairpin domain, four kringle domains, and the serine protease-like beta-chain. We prepared HGF/NK4 and HGF/beta from the entire HGF after single-cut digestion with elastase. HGF/NK4 contains the N-terminal hairpin and four kringle domains, while HGF/beta is composed of the C-terminal 16 amino acids of the alpha-chain and the entire beta-chain, linked by a disulfide bridge. HGF/NK4 competitively inhibited the binding of 125I-HGF to the receptor, and affinity cross-linking analysis indicated that HGF/NK4 alone can bind to the c-Met receptor. In contrast, HGF/beta alone did not competitively inhibit the binding of 125I-HGF to the receptor and did not bind to the c-Met/HGF receptor. Scatchard analysis and affinity cross-linking experiments indicated that HGF/beta specifically binds to c-Met in the presence of HGF/NK4 but not HGF/NK2. Neither HGF/NK4 nor HGF/beta alone induced mitogenic, motogenic (cell scattering), and morphogenic (induction of branching tubulogenesis) responses; however, HGF/beta did induce these biological responses in the presence of HGF/NK4. Consistent with these results, although neither HGF/NK4 alone nor HGF/beta alone induced tyrosine phosphorylation of the c-Met/HGF receptor, HGF/beta induced tyrosine phosphorylation of the receptor when c-Met/HGF receptor was occupied by HGF/NK4. These results indicate that HGF/beta binds to the c-Met/HGF receptor that is occupied by HGF/NK4 and induces receptor tyrosine phosphorylation and the subsequent biological activities of HGF. We propose that there exists a unique cooperative interaction between alpha- and beta-chains, this interaction leading to beta-chain-dependent receptor tyrosine phosphorylation and subsequent biological responses.  相似文献   

11.
The major function of the ubiquitin-conjugating system is the targeting of cytosolic and nuclear proteins for degradation by the proteasome. Recently, ubiquitin conjugation has been implicated in the downregulation of signalling receptors such as the mammalian growth hormone receptor (GHR) and the alpha-factor receptor in yeast. By examining truncated receptors, the internalization-deficient receptor mutant F327A and conditions under which clathrin-mediated GHR endocytosis is inhibited, we show here that GHR ubiquitination and ligand-induced GHR internalization are coupled events. Previously, we had shown that GHR endocytosis is dependent on an intact ubiquitination system. Here we present evidence that GHR ubiquitination depends on an intact endocytic pathway. Our data indicate that the ubiquitin-conjugating system and the endocytic pathway interact at the cytoplasmic tail of the GHR at the plasma membrane, where they cooperate to regulate internalization of the GHR.  相似文献   

12.
13.
We analyzed the internalization of the receptor subtype 2 (sst2) for the neuropeptide somatostatin in glioma cells at the ultrastructural level using an antibody against an extracellular amino acid sequence. Intact cells derived from solid human gliomas or those of the human glioma cell line U343 were receptor-labeled (a) by classical gold immunocytochemistry using a 15-nm gold-labeled second antibody, (b) directly with the sst2 antibody adsorbed to 5-nm colloidal gold, and (c) with the physiological ligand somatostatin conjugated to 5-nm colloidal gold. The receptor was predominantly internalized via uncoated vesicles budding from the cell membrane but only rarely via coated pits, which has been mostly reported for G-protein-coupled, seven transmembrane-domain receptors. In the presence of ligand and sst2 antibody vesicles, tubule-like structures, and multivesicular bodies were labeled in superficial and in perinuclear portions of the cells within the first 30 min. Lysosomal labeling was observed after 30 min and especially after an hour of internalization time. This internalization route is also used to study the directly labeled sst2 antibody or the labeled ligand. However, the late endosomal compartment appears to be reached more rapidly in these latter experiments.  相似文献   

14.
15.
16.
Two distinct components, alpha and beta chains, which compose the high affinity receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF) do not contain any catalytic domains of known enzymes. However, in mouse lymphoid cell lines transfected with cDNAs of the both chains, GM-CSF triggers tyrosine phosphorylation of several cellular proteins and allows continuous proliferation. To elucidate whether the high affinity receptor functions in nonhematopoietic cells, we have reconstituted human GM-CSF receptor in mouse NIH3T3 fibroblasts. In NIH3T3 clones, in which the high affinity receptor is reconstituted, human GM-CSF has triggered rapid tyrosine phosphorylation of cellular proteins, transfected beta chain, and another protein of 40-45 kDa. Moreover, human GM-CSF stimulated DNA synthesis and induced morphological transformation. These observations indicate that coordinately expressed alpha and beta chains of human GM-CSF receptor activates intrinsic protein-tyrosine kinases by the stimulation with human GM-CSF and that the activated protein-tyrosine kinases phosphorylate tyrosine residues of an intrinsic 40-45-kDa protein and the transfected beta chain in NIH3T3 cells. Activation of the protein-tyrosine kinases is likely to have biological functions to induce DNA synthesis and morphological transformation of mouse fibroblasts.  相似文献   

17.
Neurofilaments, which are exclusively found in nerve cells, are one of the earliest recognizable features of the maturing nervous system. The differential distribution of neurofilament proteins in varying degrees of phosphorylation within a neuron provides the possibility of selectively demonstrating either somata and dendrites or axons. Non-phosphorylated neurofilaments typical of somata and dendrites can be visualized with the aid of monoclonal antibody SMI 311, whereas antibody SMI 312 is directed against highly phosphorylated axonal epitopes of neurofilaments. The maturation of neuronal types, the development of area-specific axonal networks, and the gradients of maturation can thus be demonstrated. Optimal immunostaining with SMI 311 and SMI 312 is achieved when specimens are fixed in a mixture of paraformaldehyde and picric acid for up to 3 days and sections are incubated free-floating. Neurons, with their dendritic domains immunostained by SMI 311 in a Golgi-like manner, can be completely visualized in relatively thick sections. The limitations of Golgi-preparations, such as glia-labeling, artifacts, and the staining of only a small non-representative percentage of existing neurons, are not apparent in SMI preparations, which additionally provide the possibility of selectively staining axonal networks. The results achieved in normal fetal brain provide the basis for studies of developmental disturbances.  相似文献   

18.
19.
20.
Cholesterol loading of macrophages, such as occurs in atheroma foam cells, has recently been shown to upregulate a novel receptor activity that mediates the internalization degradation of the atherogenic lipoprotein, lipoprotein(a) (Lp(a)), and its protein moiety, apoprotein(a), (apo(a)). Herein, the regulation of this receptor activity by macrophage activation and interferon-gamma (IFN-gamma) was investigated. Compared with control foam cells, 125I-recombinant-apo(a) (r-apo(a)) degradation assayed after 5 h of incubation was 3-6-fold less in foam cells derived from thioglycollate- or concanavalin A-elicited mouse peritoneal macrophages. In vitro treatment of foam cells derived from resident mouse peritoneal macrophages or from human monocyte-derived macrophages with IFN-gamma also led to a substantial decrease in the ability of these cells to degrade 125I-rapo(a); similar results were obtained with 125I-Lp(a). In contrast, IFN-gamma-treated foam cells that were incubated for 10 min with 125I-r-apo(a) and then chased for 2 h in the absence of ligand degraded similar amounts of 125I-r-apo(a) as untreated foam cells. To reconcile these data, we hypothesized that the apo(a) receptor activity undergoes ligand-induced recycling and that IFN-gamma disrupts this recycling. To test this idea, control and IFN-gamma-treated foam cells were incubated for 10 min with unlabeled r-apo(a), and then 125I-r-apo(a) receptor activity was assayed at various times thereafter. Untreated foam cells showed clear evidence of ligand-induced recycling of the apo(a) receptor activity, whereas recycling was markedly diminished in the IFN-gamma-treated foam cells. Thus, by disrupting ligand-induced receptor recycling, IFN-gamma leads to down-regulation of the foam cell Lp(a)/apo(a) receptor activity. Since T cells are known to be present in atherosclerotic lesions, these findings raise the possibility that the degradation by atheroma foam cells of Lp(a) and other possible ligands for the receptor may be reversibly regulated by IFN-gamma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号