首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liquidus equilibrium relations for the air isobaric section of the system Y2O3–Fe2O3–FeO–Al2O3 are presented. A Complete solid-solution series is found between yttrium iron garnet and yttrium aluminum garnet as well as extensive solid solutions in the spinel, hematite, orthoferrite, and corundum phases. Minimum melting temperatures are raised progressively with the addition of alumina from 1469°C in the system Y–Fe–O to a quaternary isobaric peritectic at 1547°C and composition Y 0.22 Fe 1.08 Al 0.70 O 2.83* Liquidus temperatures increase rapidly with alumina substitutions beyond this point. The thermal stability of the garnet phase is increased with alumina substitution to the extent that above composition Y 0.75 Fe 0.65 Al 0.60 O 3 garnet melts directly to oxide liquid without the intrusion of the orthoferrite phase. Garnet solid solutions between Y 0.75 Fe 1.25 O 3 and Y 0.75 Fe 0.32- Al 0.93 O 3 can be crystallized from oxide liquids at minimum temperatures ranging from 1469° to 1547°C, respectively. During equilibrium crystallization of the garnet phase, large changes in composition occur through reaction with the liquid. Unless care is taken to minimize temperature fluctuations and unless growth proceeds very slowly, the crystals may show extensive compositional variation from core to exterior.  相似文献   

2.
Phase equilibria in the system HfO2–Y2O3–CaO were studied in the temperature range 1250° to 2850°C by both experimental methods (X-ray phase analysis at 20° to 2000°C, petrography, annealing and quenching, differential thermal analysis in He at temperatures to 2500°C, thermal analysis in air using a solar furnace at temperatures to 3000°C, and electron microprobe X-ray analysis) and theoretical means (development of a mathematical model for the liquidus surface by means of the reduced polynomial method). Phase equilibria were determined by the structure of the restricting binary systems. No ternary compounds were found. The liquidus was characterized by the presence of six four-phase, invariant equilibria. Solid solutions were based on monoclinic (M), tetragonal (T), and cubic (F) modifications of HfO2; C and H forms of Y2O3; CaO; and CaHfO3 that crystallized in two polymorphous modifications, namely, the cubic and rhombic perovskite-type structure.  相似文献   

3.
The phase relations at a temperature below "subsolidus" in the system Al2O3–B2O3–Nd2O3 are reported. Specimens were prepared from various compositions of Al2O3, B2O3, and Nd2O3 of purity 99.5%, 99.99%, and 99.9%, respectively, and fired at 1100°C. There are six binary compounds and one ternary compound in this system. The ternary compound, NdAl3(BO3)4 (NAB), has a phase transition at 950°C ± 15°C. The high-temperature form of NAB has a second harmonic generation (SHG) efficiency of KH2PO4 (KDP) of the order of magnitude of the form which has been used as a good self-activated laser material, and the low-temperature form of NAB has no SHG efficiency.  相似文献   

4.
5.
Measurements were made of temperature and ternary composition for coexisting liquid and crystalline phases on the air isobar in the system Fe2O3-Fe3O4-YFeO3 with particular regard to the stability range and compositional limits of yttrium iron garnet. Phase equilibrium relations were determined by conventional quenching techniques combined with measurements of loss in weight at the reaction temperature to locate true ternary compositions. The intersection of the air isobar with the ternary univariant boundary curve for coexisting magnetite, garnet, and liquid phases results in a eutectic-type situation at the composition Y0.27Fe1.73 O2.87 and 1469°± 2°C. A similar intersection of the isobar with the boundary curve for coexisting garnet, orthoferrite, and liquid phases gives rise to a peritectic-type reaction at 1555° 3°C. and Y0.44Fe1.56 O2.89 The yttrium iron garnet crystallizing from liquids within these temperature and composition limits contains up to 0.5 mole % iron oxide in excess of the stoichiometric formula in terms of the starting composition 37.5 mole % Y2O3, 62.5 mole % Fe2O3. At 1470° C. the garnet phase in equilibrium with oxide liquid contains 2 mole % FeO in solid solution. The small solubility of excess of iron oxide and partial reduction of the garnet phase in air are unavoidable during equilibrium growth from the melt.  相似文献   

6.
The phase relations for the system y2o3–Ta2o5 in the composition range 50 to 100 mol% Y2O3 have been studied by solid-state reactions at 1350°, 1500°, or 17000C and by thermal analyses up to the melting temperatures. Weberite-type orthorhombic phases (W2 phase, space group C2221), fluorite-type cubic phases (F phase, space group Fm3m )and another orthorhombic phase (O phase, space group Cmmm )are found in the system. The W2 phase forms in 75 mol% Y2O3 under 17000C and O phase in 70 mol% Y2O3 up to 1700°C These phases seem to melt incongruently. The F phase forms in about 80 mol% Y2O3 and melts congruently at 2454° 3°C. Two eutectic points seem to exist at about 2220°C 90 mol% Y2O3, and at about 1990°C, 62 mol% Y2O3. A Phase diagram including the above three phases were not identified with each other.  相似文献   

7.
The phase relations in the pseudo-ternary system La2O3–SrO–Fe2O3 have been investigated in air. Isothermal sections at 1100° and 1300°C are presented based on X-ray diffraction and thermal analysis of annealed samples. Extended solid solubility was observed for the compounds Sr n +1− v La v Fe n O3 n +1−δ ( n =1, 2, 3, and ∞) and Sr1− x La x Fe12O19, while only limited solubility of La in Sr4− z La z Fe6O13±δ was observed. At high Fe2O3 content, a liquid with low La2O3 content was stable at 1300°C.  相似文献   

8.
The importance of aluminum nitride (AlN) stems from its application in microelectronics as a substrate material due to high thermal conductivity, high electrical resistance, mechanical strength and hardness, thermal durability, and chemical stability. Yttria (Y2O3) is the best additive for AlN sintering. AlN densifies by a liquid-phase mechanism, where the surface oxide, Al2O3, reacts with Y2O3 to form an Y-Al-O-N liquid that promotes particle rearrangement and densification. Construction of the phase relations in this multicomponent system is essential for optimizing the properties of AlN. The ternary phase diagram of the AlN–Al2O3–Y2O3 was developed by Gibbs energy minimization using interpolation procedures based on modeling the binary subsystems. This paper aims at testing the resultant understanding experimentally at selected compositions using in situ high-temperature neutron diffractometry. These experimental results agree with the thermodynamic calculations of AlN–Al2O3–Y2O3. The ternary phase diagram has been constructed for the first time in this work. High-temperature neutron diffractometry has permitted real time measurement of the reactions involved in this ternary system, especially to determine the temperature range for each reaction, which would have been difficult to establish by other means.  相似文献   

9.
The phase relations in the Si3N4-rich portion of the Si3N4–AlN–Y2O3 rystem were investigated using hot-pressed bodies. The one-phase fields of β3 and α, the twophase fields of β+α, β+M (M=melilite), and α+M, and the three-phase fields of β+α+M were observed in the Si3N4-rich portion. The α- and β-sialons are not two different compounds but an allotropic transformation phase of the Si–Al–O–N system, and an α solid solution expands and stabilizes with increasing Y2O3 content. Therefore, the formulas of the two sialons should be the same.  相似文献   

10.
Subsolidus phase relationships in the Ga2O3–Al2O3–TiO2 system at 1400°C were studied using X-ray diffraction. Phases present in the pseudoternary system include TiO2 (rutile), Ga2−2 x Al2 x O3 ( x ≤0.78 β-gallia structure), Al2−2 y Ga2 y O3 ( y ≤0.12 corundum structure), Ga2−2 x Al2 x TiO5 (0≤ x ≤1 pseudobrookite structure), and several β-gallia rutile intergrowths that can be expressed as Ga4−4 x Al4 x Ti n −4O2 n −2 ( x ≤0.3, 15≤ n ≤33). This study showed no evidence to confirm that aluminum substitution of gallium stabilizes the n =7 β-gallia–rutile intergrowth as has been mentioned in previous work.  相似文献   

11.
The pseudobinary system CoNb2O5–CoTa2O6 was investigated. CoNb2O6 crystallizes in either the columbite or rutile structure, whereas CoTa2O6 assumes only the trirutile structure. In an argon atmosphere at about 1400°C, CoNb2O6 undergoes a phase transition from columbite or rutile. Between 1000° and 1400°C the solubility of CoTa2O6 in CoNb2O6 is about 10 mole %; in the same temperature region the solubility of CoNb2O6 in CoTa2O6 varies from about 40 to 70 mole %. The extensive solubility of CoNb2O6 in CoTa2O6 is explained by the ability of niobium to induce some disorder in the trirutile phase. The columbite to rutile transformation is also discussed on this basis.  相似文献   

12.
The thermodynamic data for the Y2O3–BaO–Cu2O–CuO quaternary system were optimized from measured thermodynamic data. A two-sublattice model for ionic solution was used to express the Gibbs free energy of the liquid phase, and a two-sublattice regular solution model was used for the nonstoichiometric YBa2Cu3O6+δ superconducting compound. The optimized thermodynamic data were used to calculate the phase diagrams of the Cu2O–CuO binary system and the CuO x –Y2Cu2O5 and CuO x –BaCuO2 quasi-binary systems. The results were in good agreement with reported measured data. The liquidus projection and isothermal and vertical sections of the Y2O3–BaO-CuO x quasi-ternary system were calculated. The effect of oxygen pressure on some reaction temperatures was predicted by calculating them at various oxygen pressures, and the oxygen contents (6 +δ) in YBa2Cu3O6+δ were calculated at various temperatures and oxygen pressures. The results were compared with experimental data.  相似文献   

13.
The 1:1 compound, CeA1O3, in the system Ce2O3–Al2O3 has been synthesized from the oxides and shown to have a perovskite-like tetragonal unit cell with the lattice parameters a = 3.763 and c = 3.792 Å. A new XRD pattern is suggested for CeA1O3. This compound is shown to be stable up to 1950°C. The 1:11 compound, CeAl11O18, has also been synthesized and shown to possess a magnetoplumbite-like hexagonal unit cell with the lattice parameters α= 5.558 and c = 22.012 å. An XRD pattern is suggested for CeAl11O18 for the first time. The evolution of eutectic-like microstructures was observed and reported in the Ce2O3-rich side of this binary system.  相似文献   

14.
Heat treatments in several environments were performed on a series of compounds in the Al2O3 and Y2O3 system: Al2O3Y3Al5O12 eutectic, Y3Al5O12, YAlO3, Y4Al2O9, and Y2O3. The yttrium aluminates were found to be stable at high temperatures under vacuum and in air. However, when they were heat-treated under vacuum in proximity to SiC, degradation was observed. This was found to be primarily a result of carbothermal reduction. In a similarly reducing environment without Si, the yttrium aluminates, and Al2O3 and Y2O3, all exhibited degradation by carbothermal reduction. Based upon the experimental results, a degradation mechanism for yttrium aluminates was proposed.  相似文献   

15.
The UO2–Al2O3 phase equilibrium system was found to contain no new compounds or solid solutions. Uranium dioxide melted at 2878°± 22°C. and Al2O3 melted at 2034°± 16°C. The eutectic temperature was approximately 1930°C. There is an indication that two immiscible liquids formed above the eutectic temperature between 53 and 74 mole % Al2O3.  相似文献   

16.
The cubic ( c -ZrO2) and tetragonal zirconia ( t -ZrO2) phase stability regions in the system ZrO2–Y2O3–Ta2O5 were delineated. The c -ZrO2 solid solutions are formed with the fluorite structure. The t -ZrO2 solid solutions having a c/a axial ratio (tetragonality) smaller than 1.0203 display high fracture toughness (5 to 14 MPa · m1/2), and their instability/transformability to monoclinic zirconia ( m -ZrO2) increases with increasing tetragonality. On the other hand, the t -ZrO2 solid solutions stabilized at room temperature with tetragonality greater than 1.0203 have low toughness values (2 to 5 MPa · m1/2), and their transformability is not related to the tetragonality.  相似文献   

17.
18.
The phase relations in the Nd2O3–Y2O3 system were experimentally studied in the 1300°–1600°C range. X-ray diffraction, scanning electron microscopy, and electron probe microanalysis were applied to analyze the phase composition of annealed Nd2O3–Y2O3 mixtures with varying Y2O3 content. A thermodynamic assessment was conducted using the experimental data obtained. The excess Gibbs energies of the solution phases were described based on a simple substitutional solution model. A consistent set of optimized interaction parameters was derived for the Gibbs energy of the constituent phases, resulting in a good match between calculated and experimental data.  相似文献   

19.
Subsolidus phase relations in the low-Y2O3 portion of the system ZrO2-Y2O3 were studied using DTA with fired samples and X-ray phase identification and lattice parameter techniques with quenched samples. Approximately 1.5% Y2O3 is soluble in monoclinic ZrO2, a two-phase monoclinic solid solution plus cubic solid solution region exists to ∼7.5% Y2O3 below ∼500°C, and a two-phase tetragonal solid solution plus cubic solid solution exists from ∼1.5 to 7.5% Y2O3 from ∼500° to ∼1600°C. At higher Y2O3 compositions, cubic ZrO2 solid solution occurs.  相似文献   

20.
Dielectric properties and phase formation of Bi-based pyrochlore ceramics were evaluated for the Bi2O3–ZnO–Ta2O5 system. The compositional range r Bi2(Zn1/3Ta2/3)2O7· (1− r )(Bi3/2Zn1/2)(Zn1/2Ta3/2)O7 (0 ≤ r ≤ 1) in Bi2O3–ZnO–Ta2O5 was investigated to determine the relative solubility of BZT cubic (α-BZT, r = 0) and the pseudo-orthorhombic (β-BZT, r = 1) end members. It was found that extrinsic factors, such as kinetically limited phase formation and bismuth loss, contribute to apparent phase boundaries in addition to thermodynamic stability of each phase. Considering this, the locations of true phase boundaries were r < 0.30 and r ≥ 0.74 for α and β phases, respectively. Dielectric constants between 58 and 80 and low dielectric loss (tan δ < 0.003) were measured for the complete compositional range. The temperature coefficient of capacitance was controlled by composition, which was found to be <30 ppm/°C at the edge of β-phase solid solution. In addition to the excellent dielectric properties these materials can be sintered at low temperatures, which make Bi-based pyrochlores promising candidates for high-frequency electronic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号