首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although there has been considerable work on the performance evaluation of collision avoidance schemes, most analytical work is confined to single-hop ad hoc networks or networks with very few hidden terminals. We present the first analytical model to derive the saturation throughput of collision avoidance protocols in multi-hop ad hoc networks with nodes randomly placed according to a two-dimensional Poisson distribution. We show that the sender-initiated collision-avoidance scheme achieves much higher throughput than the ideal carrier sense multiple access scheme with a separate channel for acknowledgments. More importantly, we show that the collision-avoidance scheme can accommodate much fewer competing nodes within a region in a network infested with hidden terminals than in a fully-connected network, if reasonable throughput is to be maintained. Simulations of the IEEE 802.11 MAC protocol and one of its variants validate the predictions made in the analysis. It is also shown that the IEEE 802.11 MAC protocol cannot ensure collision-free transmission of data packets and thus throughput can degrade well below what is predicted by the analysis of a correct collision avoidance protocol. Based on these results, a number of improvements are proposed for the IEEE 802.11 MAC protocol.  相似文献   

2.
In IEEE 802.11, the rate of a station (STA) is dynamically determined by link adaptation. Low-rate STAs tend to hog more channel time than high-rate STAs due to fair characteristics of carrier sense multiple access/collision avoidance, leading to overall throughput degradation. It can be improved by limiting the transmission opportunities of low-rate STAs by backoff parameters. This, however, may cause unfair transmission opportunities to low-rate STAs. In an attempt to increase overall throughput by volunteer high-rate relay STAs while maintaining fairness, we propose a new cooperative medium access control (MAC) protocol, relay-volunteered multi-rate cooperative MAC (RM-CMAC) based on ready to send/clear to send in multi-rate IEEE 802.11. In the RM-CMAC protocol, we show that the effect of hogging channel time by low-rate STAs can be remedied by controlling the initial backoff window size of low-rate STAs and the reduced transmission opportunity of low-rate STAs can be compensated by the help of volunteer high-rate relay STAs. We analyze the performance of RM-CMAC, i.e., throughput and MAC delay, by a multi-rate embedded Markov chain model. We demonstrate that our analysis is accurate and the RM-CMAC protocol enhances the network throughput and MAC delay while maintaining the fairness of low-rate STAs.  相似文献   

3.
Vitsas  V.  Boucouvalas  A.C. 《Wireless Networks》2003,9(5):495-507
Advanced Infrared (AIr) is a proposed standard of the Infrared Data Association (IrDA) for indoor infrared LANs. AIr Medium Access Control (MAC) employs Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) techniques with Request To Send/Clear To Send (RTS/CTS) frame exchange to address the hidden station problem. A long Collision Avoidance Slot (CAS) duration, that includes the beginning of the CTS frame, is defined to cope with collisions caused from hidden stations. AIr MAC employs linear adjustment of the Contention Window (CW) size to minimize delays emerging from the long CAS duration. This paper provides a simple and accurate analytical model for the linear CW adjustment that calculates AIr throughput assuming a finite number of stations and error free channel transmissions. Validity of the model is verified by comparing analysis with simulation results. By examining the first derivative of the throughput equation, we derive the optimum CW size that maximizes throughput as a function of the network size. In the case of the AIr protocol, where a collision lasts exactly one CAS, different conclusions result for maximum throughput as compared with the corresponding conclusions for the similar IEEE 802.11 protocol. Using the proposed model, we present an extensive AIr throughput performance evaluation. The effectiveness of physical and link layer parameters on throughput performance is explored. The proposed long CAS duration combined with CW linear adjustment are proven quite effective. Linear CW adjustment combined with the long CAS duration offer an efficient collision avoidance scheme that does not suffer from collisions caused from hidden stations.  相似文献   

4.
The presence of hidden nodes degrades the performance of wireless networks due to an excessive amount of data frame collisions. The IEEE 802.15.4 medium access control (MAC) protocol, which is widely used in current wireless sensor networks, does not provide any hidden node avoidance mechanisms and consequently could lead to severe performance degradation in networks with hidden nodes. This paper presents a simple technique based on discrete-time Markov chain analysis to approximate the throughput of IEEE 802.15.4 MAC protocol in the presence of hidden nodes. Using different network configurations, we validate the applicability of the proposed analysis for generic star-topology networks. Based on the analysis, the effects of network size, topology, frame length and frame arrival rate on the throughput of the system are investigated.  相似文献   

5.
EBA: an enhancement of the IEEE 802.11 DCF via distributed reservation   总被引:3,自引:0,他引:3  
The IEEE 802.11 standard for wireless local area networks (WLANs) employs a medium access control (MAC), called distributed coordination function (DCF), which is based on carrier sense multiple access with collision avoidance (CSMA/CA). The collision avoidance mechanism utilizes the random backoff prior to each frame transmission attempt. The random nature of the backoff reduces the collision probability, but cannot completely eliminate collisions. It is known that the throughput performance of the 802.11 WLAN is significantly compromised as the number of stations increases. In this paper, we propose a novel distributed reservation-based MAC protocol, called early backoff announcement (EBA), which is backward compatible with the legacy DCF. Under EBA, a station announces its future backoff information in terms of the number of backoff slots via the MAC header of its frame being transmitted. All the stations receiving the information avoid collisions by excluding the same backoff duration when selecting their future backoff value. Through extensive simulations, EBA is found to achieve a significant increase in the throughput performance as well as a higher degree of fairness compared to the 802.11 DCF.  相似文献   

6.
The popular IEEE 802.11 wireless local area network (WLAN) is based on a carrier sense multiple access with collision avoidance (CSMA/CA), where a station listens to the medium before transmission in order to avoid collision. If there exist stations which can not hear each other, i.e., hidden stations, the potential collision probability increases, thus dramatically degrading the network throughput. The RTS/CTS (request-to-send/clear-to-send) frame exchange is a solution for the hidden station problem, but the RTS/CTS exchange itself consumes the network resources by transmitting the control frames. In order to maximize the network throughput, we need to use the RTS/CTS exchange adaptively only when hidden stations exist in the network. In this letter, a simple but very effective hidden station detection mechanism is proposed. Once a station detects the hidden stations via the proposed detection mechanism, it can trigger the usage of the RTS/CTS exchange. The simulation results demonstrate that the proposed mechanism can provide the maximum system throughput performance.  相似文献   

7.
We propose and evaluate the performance of a new MAC-layer protocol for mobile ad hoc networks, called the Slow Start Power Controlled (abbreviated SSPC) protocol. SSPC improves on IEEE 802.11 by using power control for the RTS/CTS and DATA frame transmissions, so as to reduce energy consumption and increase network throughput and lifetime. In our scheme the transmission power used for the RTS frames is not constant, but follows a slow start principle. The CTS frames, which are sent at maximum transmission power, prevent the neighbouring nodes from transmitting their DATA frames at power levels higher than a computed threshold, while allowing them to transmit at power levels less than that threshold. Reduced energy consumption is achieved by adjusting the node transmission power to the minimum required value for reliable reception at the receiving node, while increase in network throughput is achieved by allowing more transmissions to take place simultaneously. The slow start principle used for calculating the appropriate DATA frames transmission power and the possibility of more simultaneous collision-free transmissions differentiate the SSPC protocol from the other MAC solutions proposed for IEEE 802.11. Simulation results indicate that the SSPC protocol achieves a significant reduction in power consumption, average packet delay and frequency of RTS frame collisions, and a significant increase in network throughput and received-to-sent packets ratio compared to IEEE 802.11 protocol.  相似文献   

8.
无线自组网中的移动节点大多依靠电池提供能量,因此能量是影响无线自组网性能的一个很大的瓶颈,作为事实上的无线自组网媒体接入协议,802.11并没有动态调整传输功率的能力,大大限制了网络的生存时间。采用功率控制可以提高节点的功率使用效率,减少相邻节点间的干扰,改善网络的性能。在802.11基础上提出一种基于信噪比的动态传输功率控制算法。通过进行计算机仿真,与802.11协议相比,在保持吞吐量性能的前提下,大大减少了节点的功率消耗,提高了节点的能量利用率。  相似文献   

9.
High throughput and fair resource sharing are two of the most important objectives in designing a medium access control (MAC) protocol. Currently, most MAC protocols including IEEE 802.11 DCF adopt a random access based approach in a distributed manner in order to coordinate the wireless channel accesses among competing stations. In this paper, we first identify that a random access?Cbased MAC protocol may suffer from MAC protocol overhead such as a random backoff for data transmission and a collision among simultaneously transmitting stations. Then, we propose a new MAC protocol, called sequential coordination function (SCF), which coordinates every station to send a data frame sequentially one after another in a distributed manner. By defining a service period and a joining period, the SCF eliminates unnecessary contentions during the service period, and by explicitly determining the sequence of frame transmission for each stations, it reduces collision occurrences and ensures fairness among stations in the service period. The performance of SCF is investigated through intensive simulations, which show that the SCF achieves higher throughput and fairness performances than other existing MAC protocols in a wide range of the traffic load and the number of stations.  相似文献   

10.
基于干扰图的无线自组织网络MAC协议   总被引:1,自引:0,他引:1  
由于IEEE802.11MAC协议采用了简单的干扰模型,因此产生了隐藏终端和暴露终端这两个严重影响无线自组织网络性能的问题。文章提出了一种新的基于干扰图(Conflict Graph)的MAC协议——CG-MAC来提高无线自组织网络的吞吐量。通过仿真实验,该协议能够同时解决隐藏终端和暴露终端问题.很大程度地提高了网络性能。  相似文献   

11.
In wireless LANs (WLANs), the medium access control (MAC) protocol is the main element that determines the efficiency in sharing the limited communication bandwidth of the wireless channel. In this paper we focus on the efficiency of the IEEE 802.11 standard for WLANs. Specifically, we analytically derive the average size of the contention window that maximizes the throughput, hereafter theoretical throughput limit, and we show that: 1) depending on the network configuration, the standard can operate very far from the theoretical throughput limit; and 2) an appropriate tuning of the backoff algorithm can drive the IEEE 802.11 protocol close to the theoretical throughput limit. Hence we propose a distributed algorithm that enables each station to tune its backoff algorithm at run-time. The performances of the IEEE 802.11 protocol, enhanced with our algorithm, are extensively investigated by simulation. Specifically, we investigate the sensitiveness of our algorithm to some network configuration parameters (number of active stations, presence of hidden terminals). Our results indicate that the capacity of the enhanced protocol is very close to the theoretical upper bound in all the configurations analyzed  相似文献   

12.
Coskun  Mehmet B.   《Ad hoc Networks》2008,6(6):860-877
Designing a medium access control (MAC) protocol that simultaneously provides high throughput and allows individual users to share limited spectrum resources fairly, especially in the short-term time horizon, is a challenging problem for wireless LANs. In this paper, we propose an efficient cooperative MAC protocol with very simple state information that considers only collisions, like the standard IEEE 802.11 MAC protocol. However, contrary to the IEEE 802.11 MAC, the cooperative MAC gives collided users priority to access the channel by assigning them shorter backoff counters and interframe-spaces than users who did not participate in the collision event. In other words, collided users are the only ones allowed to transmit in the following contention period. For the cooperative MAC protocol, we utilize an analytical throughput model to obtain the optimal parameter settings. Simulation results show that the cooperative MAC provides significant improvement in short-term fairness and access delay, while still providing high network throughput.  相似文献   

13.
Data relay satellite (DRS) systems play an important role in space information networks. Characterized by highly dynamic topology and discontinuous communication links, it is suggested that the IEEE 802.11 protocol employed in such a network could be more flexible. However, such a terrestrial network protocol could not be applied to DRS systems directly, nor supports a fast response due to the long propagation delay and severe packet collision. To address this challenge, we proposed an enhanced media access control (MAC) protocol based on the IEEE 802.11 protocol providing multiaccess for low earth orbit (LEO) distributed constellations. In this paper, we investigated the access delay performance of the proposed protocol in our model. Then, we derived a contention window adaption by using an iteration algorithm that can dynamically adjust the values of the contention window depending on the number of user satellites in the communication coverage. Simulation results show that the average access delay does not exceed 20 seconds, which is significantly lower than the standard protocol. Moreover, the traffic threshold is increased to 0.6, and the maximum throughput has doubled compared with the standard protocol. It is proved that the enhanced MAC protocol shows a better performance in DRS systems.  相似文献   

14.
This article presents three versions of a novel MAC protocol for IEEE 802.11 ad-hoc networks called Busy Signal-based Mechanism turned On (BusySiMOn) (This is an extended version of our conference paper: [15]). The key idea of the proposed solution is based on an intelligent two-step reservation procedure combined with the advantages of EDCA service differentiation. The former alleviates the hidden node problem while the latter ensures compatibility with the IEEE 802.11 standard. Simulation results obtained for saturated and non-saturated network conditions emphasize the advantages of the new protocol over the currently used four-way handshake mechanism in terms of fairness, throughput, and average frame delay.  相似文献   

15.
For IEEE 802.11-based wireless local area networks (WLANs), due to inherent random access mechanisms, it is very challenging to provision video services, which are subject to very stringent quality-of-service (QoS) constraints. Collision and fading are two main sources of packet loss in WLANs and as such, both are affected by the packetization at the medium access control (MAC) layer. While a larger packet is preferred to balance protocol header overhead, a shorter packet is less vulnerable to packet loss due to channel fading errors or staggered collisions in the presence of hidden terminals. In this paper, we exploit estimate of collision probabilities to adapt packetization for video frames. We first show analytically that the effective throughput is a unimodal function of packet size when considering both channel fading and staggered collisions. We then design an additive increase and multiplicative decrease (AIMD) packetization strategy which adjusts the MAC-layer packet size based on local estimate of staggered collision probability. It is demonstrated that the proposed approach can greatly improve the effective throughput of WLAN and reduce video frame transfer delay.  相似文献   

16.
There is a vast literature on the throughput analysis of the IEEE 802.11 media access control (MAC) protocol. However, very little has been done on investigating the interplay between the collision avoidance mechanisms of the 802.11 MAC protocol and the dynamics of upper layer transport protocols. In this paper, we tackle this issue from an analytical, simulative, and experimental perspective. Specifically, we develop Markov chain models to compute the distribution of the number of active stations in an 802.11 wireless local area network (WLAN) when long-lived transmission control protocol (TCP) connections compete with finite-load user datagram protocol (UDP) flows. By embedding these distributions in the MAC protocol modeling, we derive approximate but accurate expressions of the TCP and UDP throughput. We validate the model accuracy through performance tests carried out in a real WLAN for a wide range of configurations. Our analytical model and the supporting experimental outcomes show that 1) the total TCP throughput is basically independent of the number of open TCP connections and the aggregate TCP traffic can be equivalently modeled as two saturated flows; and 2) in the saturated regime, n UDP flows obtain about n times the aggregate throughput achieved by the TCP flows, which is independent of the overall number of persistent TCP connections.  相似文献   

17.
The hybrid MAC protocol specified by IEEE 802.11ad for millimeter wave wireless LANs consist of carrier sense multiple access/collision avoidance (CSMA/CA) during the contention based access periods (CBAPs) and TDMA during the service periods. To provide channel access during CBAP, the coverage area around the access point (AP) can be divided into several quasi omni (QO) beam levels. When uplink channel access during CBAP is considered, every directional multigigabit station residing within a QO level uses CSMA/CA protocol for getting the transmission opportunity. With equal beam width receive QO levels at the AP, we present an analytical model to compute the uplink throughput of the network in the CBAP, by closely following the 802.11ad MAC protocol specifications. We demonstrate that PHY layer MCS (modulation and coding scheme) dependent adaptive selection of QO levels can improve the throughput performance. In the second part of the paper, we consider that PCP/AP can have at most three radios, each tuned to operate in non-overlapping frequency bands as specified by 802.11ad PHY. We establish that such an arrangement can lead to concurrent transmissions in the network and improve the uplink throughput performance.  相似文献   

18.
顾燕  沈连丰 《电路与系统学报》2006,11(4):112-115,135
本文提出了一种应用于移动Ad Hoc网络中的功率控制MAC(medium access contr01)协议,通过两个通信节点之间的控制包中的信息交换来决定数据包的发送功率以及其它邻节点下一次发送RTS控制包的功率。通过仿真与IEEE 802.11 MAC协议进行比较,由仿真结果可以看出,该协议能大大减少移动节点消耗的功率,提高节点的能量利用效率,并保持系统的吞吐量性能。  相似文献   

19.
一种联合路由层信息设计的多跳Ad Hoc MAC层协议   总被引:5,自引:0,他引:5  
谢海波  崔毅东  徐惠民 《电子学报》2006,34(12):2129-2133
提出了一种单信道多跳Ad Hoc网络的媒体接入层协议.利用全向天线的特点,协议控制帧捎带路由信息,使邻居节点获知节点间路由状态.上游节点的ACK应答直接触发下游节点的CTS握手,形成CTS/DATA/ACK三维交互机制.协议可有效减少网络的握手开销,降低重负载时握手帧的冲突概率.仿真表明,协议可适应不同的拓扑.最好情况下,协议较IEEE 802.11协议的吞吐量约提升16.1%,端到端延时约降低16.8%.改善了多跳Ad Hoc网络性能.  相似文献   

20.
This paper evaluates throughput of IEEE 802.15.4 network under the interference of a saturated IEEE 802.11 network using an analytic method. Packet losses due to both collisions among IEEE 802.15.4 and mutual interference between IEEE 802.15.4 and 802.11 are considered for throughput analysis. To include the interference from IEEE 802.11, we modified the state transition probabilities of IEEE 802.15.4 two-state Markov process model. Simulation results closely match the theoretical expressions confirming the effectiveness of the proposed model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号