首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A cluster-based model is preferable in wireless sensor network due to its ability to reduce energy consumption. However, managing the nodes inside the cluster in a dynamic environment is an open challenge. Selecting the cluster heads (CHs) is a cumbersome process that greatly affects the network performance. Although there are several studies that propose CH selection methods, most of them are not appropriate for a dynamic clustering environment. To avoid this problem, several methods were proposed based on intelligent algorithms such as fuzzy logic, genetic algorithm (GA), and neural networks. However, these algorithms work better within a single-hop clustering model framework, and the network lifetime constitutes a big issue in case of multi-hop clustering environments. This paper introduces a new CH selection method based on GA for both single-hop and the multi-hop cluster models. The proposed method is designed to meet the requirements of dynamic environments by electing the CH based on six main features, namely, (1) the remaining energy, (2) the consumed energy, (3) the number of nearby neighbors, (4) the energy aware distance, (5) the node vulnerability, and (6) the degree of mobility. We shall see how the corresponding results show that the proposed algorithm greatly extends the network lifetime.  相似文献   

2.
Due to inherent issue of energy limitation in sensor nodes, the energy conservation is the primary concern for large‐scale wireless sensor networks. Cluster‐based routing has been found to be an effective mechanism to reduce the energy consumption of sensor nodes. In clustered wireless sensor networks, the network is divided into a set of clusters; each cluster has a coordinator, called cluster head (CH). Each node of a cluster transmits its collected information to its CH that in turn aggregates the received information and sends it to the base station directly or via other CHs. In multihop communication, the CHs closer to the base station are burdened with high relay load; as a result, their energy depletes much faster as compared with other CHs. This problem is termed as the hot spot problem. In this paper, a distributed fuzzy logic‐based unequal clustering approach and routing algorithm (DFCR) is proposed to solve this problem. Based on the cluster design, a multihop routing algorithm is also proposed, which is both energy efficient and energy balancing. The simulation results reinforce the efficiency of the proposed DFCR algorithm over the state‐of‐the‐art algorithms, ie, energy‐aware fuzzy approach to unequal clustering, energy‐aware distributed clustering, and energy‐aware routing algorithm, in terms of different performance parameters like energy efficiency and network lifetime.  相似文献   

3.

Wireless sensor network (WSN) becomes a hot research topic owing to its application in different fields. Minimizing the energy dissipation, maximizing the network lifetime, and security are considered as the major quality of service (QoS) factors in the design of WSN. Clustering is a commonly employed energy-efficient technique; however, it results in a hot spot issue. This paper develops a novel secure unequal clustering protocol with intrusion detection technique to achieve QoS parameters like energy, lifetime, and security. Initially, the proposed model uses adaptive neuro fuzzy based clustering technique to select the tentative cluster heads (TCHs) using three input parameters such as residual energy, distance to base station (BS), and distance to neighbors. Then, the TCHs compete for final CHs and the optimal CHs are selected using the deer hunting optimization (DHO) algorithm. The DHO based clustering technique derives a fitness function using residual energy, distance to BS, node degree, node centrality, and link quality. To further improve the performance of the proposed method, the cluster maintenance phase is utilized for load balancing. Finally, to achieve security in cluster based WSN, an effective intrusion detection system using a deep belief network is executed on the CHs to identify the presence of intruders in the network. An extensive set of experiments were performed to ensure the superior performance of the proposed method interms of energy efficiency, network lifetime, packet delivery ratio, average delay, and intrusion detection rate.

  相似文献   

4.
Clustering has been well known as an effective way to reduce energy dissipation and prolong network lifetime in wireless sensor networks. Recently, game theory has been used to model clustering problem. Each node is modeled as a player which can selfishly choose its own strategies to be a cluster head (CH) or not. And by playing a localized clustering game, it gets an equilibrium probability to be a CH that makes its payoff keep equilibrium. In this paper, based on game theory, we present a clustering protocol named Hybrid, Game Theory based and Distributed clustering. In our protocol, we specifically define the payoff for each node when choosing different strategies, where both node degree and distance to base station are considered. Under this definition, each node gets its equilibrium probability by playing the game. And it decides whether to be a CH based on this equilibrium probability that can achieve a good trade-off between minimizing energy dissipation and providing the required services effectively. Moreover, an iterative algorithm is proposed to select the final CHs from the potential CHs according to a hybrid of residual energy and the number of neighboring potential CHs. Our iterative algorithm can balance the energy consumption among nodes and avoid the case that more than one CH occurs in a close proximity. And we prove it terminates in finite iterations. Simulation results show that our protocol outperforms LEACH, CROSS and LGCA in terms of network lifetime.  相似文献   

5.
6.
Designing energy efficient communication protocols for wireless sensor networks (WSNs) to conserve the sensors' energy is one of the prime concerns. Clustering in WSNs significantly reduces the energy consumption in which the nodes are organized in clusters, each having a cluster head (CH). The CHs collect data from their cluster members and transmit it to the base station via a single or multihop communication. The main issue in such mechanism is how to associate the nodes to CHs and how to route the data of CHs so that the overall load on CHs are balanced. Since the sensor nodes operate autonomously, the methods designed for WSNs should be of distributed nature, i.e., each node should run it using its local information only. Considering these issues, we propose a distributed multiobjective‐based clustering method to assign a sensor node to appropriate CH so that the load is balanced. We also propose an energy‐efficient routing algorithm to balance the relay load among the CHs. In case any CH dies, we propose a recovery strategy for its cluster members. All our proposed methods are completely distributed in nature. Simulation results demonstrate the efficiency of the proposed algorithm in terms of energy consumption and hence prolonging the network lifetime. We compare the performance of the proposed algorithm with some existing algorithms in terms of number of alive nodes, network lifetime, energy efficiency, and energy population.  相似文献   

7.
Designing an energy efficient and durable wireless sensor networks (WSNs) is a key challenge as it personifies potential and reactive functionalities in harsh antagonistic environment at which wired system deployment is completely infeasible. Majority of the clustering mechanisms contributed to the literature concentrated on augmenting network lifetime and energy stability. However, energy consumption incurred by cluster heads (CHs) are high and thereby results in minimized network lifetime and frequent CHs selection. In this paper, a modified whale-dragonfly optimization algorithm and self-adaptive cuckoo search-based clustering strategy (MWIDOA-SACS) is proposed for sustaining energy stability and augment network lifetime. In specific, MWIDOA-SACS is included for exploiting the fitness values that aids in determining two optimal nodes that are selected as optimal CH and cluster router (CR) nodes in the network. In MWIDOA, the search conduct of dragon flies is completely updated through whale optimization algorithm (WOA) for preventing load balancing at CHs. It minimized the overhead of CH by adopting CHs and CR for collecting information from cluster members and transmitting the aggregated data from CHs to the base station (BS). It included self-adaptive cuckoo search (SACS) for achieving sink mobility using radius, energy stability, received signal strength, and throughput for achieving optimal data transmission process after partitioning the network into unequal clusters. Simulation experiments of the proposed MWIDOA-SACS confirmed better performance in terms of total residual energy by 21.28% and network lifetime by 26.32%, compared to the competitive CH selection strategies.  相似文献   

8.
In an energy‐constrained wireless sensor networks (WSNs), clustering is found to be an effective strategy to minimize the energy depletion of sensor nodes. In clustered WSNs, network is partitioned into set of clusters, each having a coordinator called cluster head (CH), which collects data from its cluster members and forwards it to the base station (BS) via other CHs. Clustered WSNs often suffer from the hot spot problem where CHs closer to the BS die much early because of high energy consumption contributed by the data forwarding load. Such death of nodes results coverage holes in the network very early. In most applications of WSNs, coverage preservation of the target area is a primary measure of quality of service. Considering the energy limitation of sensors, most of the clustering algorithms designed for WSNs focus on energy efficiency while ignoring the coverage requirement. In this paper, we propose a distributed clustering algorithm that uses fuzzy logic to establish a trade‐off between the energy efficiency and coverage requirement. This algorithm considers both energy and coverage parameters during cluster formation to maximize the coverage preservation of target area. Further, to deal with hot spot problem, it forms unequal sized clusters such that more CHs are available closer to BS to share the high data forwarding load. The performance of the proposed clustering algorithm is compared with some of the well‐known existing algorithms under different network scenarios. The simulation results validate the superiority of our algorithm in network lifetime, coverage preservation, and energy efficiency.  相似文献   

9.
This paper proposes a novel energy efficient unequal clustering algorithm for large scale wireless sensor network(WSN) which aims to balance the node power consumption and prolong the network lifetime as long as possible.Our approach focuses on energy efficient unequal clustering scheme and inter-cluster routing protocol.On the one hand,considering each node’s local information such as energy level,distance to base station and local density,we use fuzzy logic system to determine one node’s chance of becoming cluster head and estimate the corresponding competence radius.On the other hand,adaptive max-min ant colony optimization is used to construct energy-aware inter-cluster routing between cluster heads and base station(BS),which balances the energy consumption of cluster heads and alleviates the hot spots problem that occurs in multi-hop WSN routing protocol to a large extent.The confirmation experiment results have indicated the proposed clustering algorithm has more superior performance than other methods such as low energy adaptive clustering hierarchy(LEACH) and energy efficient unequal clustering(EEUC).  相似文献   

10.
The improvement of sensor networks’ lifetime has been a major research challenge in recent years. This is because sensor nodes are battery powered and may be difficult to replace when deployed. Low energy adaptive clustering hierarchical (LEACH) routing protocol was proposed to prolong sensor nodes lifetime by dividing the network into clusters. In each cluster, a cluster head (CH) node receives and aggregates data from other nodes. However, CH nodes in LEACH are randomly elected which leads to a rapid loss of network energy. This energy loss occurs when the CH has a low energy level or when it is far from the BS. LEACH with two level cluster head (LEACH-TLCH) protocol deploys a secondary cluster head (2CH) to relieve the cluster head burden in these circumstances. However, in LEACH-TLCH the optimal distance of CH to base station (BS), and the choicest CH energy level for the 2CH to be deployed for achieving an optimal network lifetime was not considered. After a survey of related literature, we improved on LEACH-TLCH by investigating the conditions set to deploy the 2CH for an optimal network lifetime. Experiments were conducted to indicate how the 2CH impacts on the network at different CH energy levels and (or) CH distance to BS. This, is referred to as factor-based LEACH (FLEACH). Investigations in FLEACH show that as CHs gets farther from the BS, the use of a 2CH extends the network lifetime. Similarly, an increased lifetime also results as the CH energy decreases when the 2CH is deployed. We further propose FLEACH-E which uses a deterministic CH selection with the deployment of 2CH from the outset of network operation. Results show an improved performance over existing state-of-the-art homogeneous routing protocols.  相似文献   

11.
In wireless sensor networks (WSNs), clustering has been shown to be an efficient technique to improve scalability and network lifetime. In clustered networks, clustering creates unequal load distribution among cluster heads (CHs) and cluster member (CM) nodes. As a result, the entire network is subject to premature death because of the deficient active nodes within the network. In this paper, we present clustering‐based routing algorithms that can balance out the trade‐off between load distribution and network lifetime “green cluster‐based routing scheme.” This paper proposes a new energy‐aware green cluster‐based routing algorithm to preventing premature death of large‐scale dense WSNs. To deal with the uncertainty present in network information, a fuzzy rule‐based node classification model is proposed for clustering. Its primary benefits are flexibility in selecting effective CHs, reliability in distributing CHs overload among the other nodes, and reducing communication overhead and cluster formation time in highly dense areas. In addition, we propose a routing scheme that balances the load among sensors. The proposed scheme is evaluated through simulations to compare our scheme with the existing algorithms available in the literature. The numerical results show the relevance and improved efficiency of our scheme.  相似文献   

12.
In large-scale heterogeneous wireless sensor networks (WSNs), clustering is particularly significant for lowering sensor nodes (SNs) energy consumption and creating algorithm more energy efficient. The selection of cluster heads (CHs) is a crucial task in the clustering method. In this paper, optimised K-means clustering algorithm and optimised K-means based modified intelligent CH selection based on BFOA for large-scale network (lar-OK-MICHB) is hybridised for CH selection process. Here, we utilised the extended capabilities of OK-MICHB algorithm for large-scale network. Furthermore, in many applications where energy is a primary constraint, such as military surveillance and natural disaster prediction, the stability region is also a significant factor, with a longer network lifespan being a primary requirement. In the proposed approach, only the CH selection is made after every round in place of cluster and CH change as done in conventional hierarchical algorithm. The simulation results reveal that, while keeping the distributive structure of WSNs, suggested lar-OKMIDEEC can locate real greater leftover energy nodes for selection of CH without utilising randomise or estimated procedures. Furthermore, as compared with the multi-level MIDEEC protocol, this offers a larger stability region with 68.96% increment, more consistent selection of CH in every round, and greater packets (i.e., in numbers) received at the base station (BS) with a longer network lifetime with 327% increment.  相似文献   

13.
Wireless sensor networks (WSNs) need simple and effective approaches to reduce energy consumption because of limited energy. Clustering nodes is an effective approach to make WSNs energy-efficient. In this paper we propose a distributed multi-competitive clustering approach (DMCC) for WSNs. First, the nodes with high residual energy are selected to act as cluster head candidates (CHCs). Second, cluster heads (CHs) are selected from the CHCs based on a hybrid of competition. If the distances to the selected CHs are suitable, a CHC with more neighbor nodes and smaller average distance to its neighbor nodes is more likely to become a CH. If the number of CHs selected from the CHCs is insufficient, more CHs are selected from non-CHCs continually according to residual energy until the CHs number is suitable. DMCC makes the CHs number stable and distribute the CHs evenly. Simulation experiments were performed on to compare DMCC with some related clustering approaches. The experimental results suggest that DMCC balances the load among different clusters and reduces the energy consumption, which improves the network lifetime.  相似文献   

14.
Wireless sensor network (WSN) consists of densely distributed nodes that are deployed to observe and react to events within the sensor field. In WSNs, energy management and network lifetime optimization are major issues in the designing of cluster-based routing protocols. Clustering is an efficient data gathering technique that effectively reduces the energy consumption by organizing nodes into groups. However, in clustering protocols, cluster heads (CHs) bear additional load for coordinating various activities within the cluster. Improper selection of CHs causes increased energy consumption and also degrades the performance of WSN. Therefore, proper CH selection and their load balancing using efficient routing protocol is a critical aspect for long run operation of WSN. Clustering a network with proper load balancing is an NP-hard problem. To solve such problems having vast search area, optimization algorithm is the preeminent possible solution. Spider monkey optimization (SMO) is a relatively new nature inspired evolutionary algorithm based on the foraging behaviour of spider monkeys. It has proved its worth for benchmark functions optimization and antenna design problems. In this paper, SMO based threshold-sensitive energy-efficient clustering protocol is proposed to prolong network lifetime with an intend to extend the stability period of the network. Dual-hop communication between CHs and BS is utilized to achieve load balancing of distant CHs and energy minimization. The results demonstrate that the proposed protocol significantly outperforms existing protocols in terms of energy consumption, system lifetime and stability period.  相似文献   

15.
Energy conservation and fault tolerance are two critical issues in the deployment of wireless sensor networks (WSNs). Many cluster‐based fault‐tolerant routing protocols have been proposed for energy conservation and network lifetime maximization in WSNs. However, these protocols suffer from high frequency of re‐clustering as well as extra energy consumption to tolerate failures and consider only some very normal parameters to form clusters without any verification of the energy sufficiency for data routing. Therefore, this paper proposes a cluster‐based fault‐tolerant routing protocol referred as CFTR. This protocol allows higher energy nodes to become Cluster Heads (CHs) and operate multiple rounds to diminish the frequency of re‐clustering. Additionally, for the sake to get better energy efficiency and balancing, we introduce a cost function that considers during cluster formation energy cost from sensor node to CH, energy cost from CH to sink, and another significant parameter, namely, number of cluster members in previous round. Further, the proposed CFTR takes care of nodes, which have no CH in their communication range. Also, it introduces a routing algorithm in which the decision of next hop CH selection is based on a cost function conceived to select routes with sufficient energy for data transfer and distribute uniformly the overall data‐relaying load among the CHs. As well, a low‐overhead algorithm to tolerate the sudden failure of CHs is proposed. We perform extensive simulations on CFTR and compare their results with those of two recent existing protocols to demonstrate its superiority in terms of different metrics.  相似文献   

16.
Energy efficiency in specific clustering protocols is highly desired in wireless sensor networks. Most existing clustering protocols periodically form clusters and statically assign cluster heads (CHs) and thus are not energy efficient. Every non‐CH node of these protocols sends data to the CH in every time slot of a frame allocated to them using the time division multiple access scheme, which is an energy‐consuming process. Moreover, these protocols do not provide any fault tolerance mechanism. Considering these limitations, we have proposed an efficient fault‐tolerant and energy‐efficient clustering protocol for a wireless sensor network. The performance of the proposed protocol was tested by means of a simulation and compared against the low energy adaptive clustering hierarchy and dynamic static clustering protocols. Simulation results showed that the fault‐tolerant and energy‐efficient clustering protocol has better performance than both the low energy adaptive clustering hierarchy and dynamic static clustering protocols in terms of energy efficiency and reliability. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Clustering has been proposed as a promising method for simplifying the routing process in mobile ad hoc networks (MANETs). The main objective in clustering is to identify suitable node representatives, i.e. cluster heads (CHs) to store routing and topology information; CHs should be elected so as to maximize clusters stability, that is to prevent frequent cluster re-structuring. Since CHs are engaged on packet forwarding they are prone to rapidly drop their energy supplies, hence, another important objective of clustering is to prevent such node failures. Recently proposed clustering algorithms either suggest CH election based on node IDs (nodes with locally lowest ID value become CHs) or take into account additional metrics (such as energy and mobility) and optimize initial clustering. Yet, the former method is biased against nodes with low IDs (which are likely to serve as CHs for long periods and therefore run the risk of rapid battery exhaustion). Similarly, in the latter method, in many situations (e.g. in relatively static topologies) re-clustering procedure is hardly ever invoked; hence initially elected CHs soon suffer from energy drainage. Herein, we propose LIDAR, a novel clustering method which represents a major improvement over alternative clustering algorithms: node IDs are periodically re-assigned so that nodes with low mobility rate and high energy capacity are assigned low ID values and, therefore, are likely to serve as CHs. Therefore, LIDAR achieves stable cluster formations and balanced distribution of energy consumption over mobile nodes. Our protocol also greatly reduces control traffic volume of existing algorithms during clustering maintenance phase, while not risking the energy availability of CHs. Simulation results demonstrate the efficiency, scalability and stability of our protocol against alternative approaches.  相似文献   

18.
An Improved Fuzzy Unequal Clustering Algorithm for Wireless Sensor Network   总被引:1,自引:0,他引:1  
This paper introduces IFUC, which is an Improved Fuzzy Unequal Clustering scheme for large scale wireless sensor networks (WSNs).It aims to balance the energy consumption and prolong the network lifetime. Our approach focuses on energy efficient clustering scheme and inter-cluster routing protocol. On the one hand, considering each node’s local information such as energy level, distance to base station and local density, we use fuzzy logic system to determine each node’s chance of becoming cluster head and estimate the cluster head competence radius. On the other hand, we use Ant Colony Optimization (ACO) method to construct the energy-aware routing between cluster heads and base station. It reduces and balances the energy consumption of cluster heads and solves the hot spots problem that occurs in multi-hop WSN routing protocol to a large extent. The validation experiment results have indicated that the proposed clustering scheme performs much better than many other methods such as LEACH, CHEF and EEUC.  相似文献   

19.
In a static wireless sensor network (WSN), sensors close to the base station (BS) run out of energy at a much faster rate than sensors in other parts of the network. This is because the sensor close to the BS always relays the data for other sensors, resulting in an unequal distribution of network residual energy. In this paper, we propose a scheme for enhancing the network lifetime using multiple mobile cluster heads (CHs) that can move in the WSN in a controllable manner. The CH controllably moves toward the energy‐rich sensors or the event area, offering the benefits of maintaining the remaining energy more evenly, or eliminating multihop transmission. Therefore, the proposed scheme increases the network lifetime. We theoretically analyze the energy consumption in our scheme and propose three heuristical mobility strategies. We further study the collaboration among CHs in order to maintain their connectivity to the BS to ensure the delay requirement for real‐time applications. Simulation shows that network lifetime is increased by upto 75% over existing approach by making CHs always move toward a stable equilibrium point. Our connectivity algorithm provides a best case improvement of 40% in transmission delays over existing schemes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
A magnanimous number of collaborative sensor nodes make up a Wireless Sensor Network (WSN). These sensor nodes are outfitted with low-cost and low-power sensors. The routing protocols are responsible for ensuring communications while considering the energy constraints of the system. Achieving a higher network lifetime is the need of the hour in WSNs. Currently, many network layer protocols are considering a heterogeneous WSN, wherein a certain number of the sensors are rendered higher energy as compared to the rest of the nodes. In this paper, we have critically analysed the various stationary heterogeneous clustering algorithms and assessed their lifetime and throughput performance in mobile node settings also. Although many newer variants of Distributed Energy-Efficiency Clustering (DEEC) scheme execute proficiently in terms of energy efficiency, they suffer from high system complexity due to computation and selection of large number of Cluster Heads (CHs). A protocol in form of Cluster-head Restricted Energy Efficient Protocol (CREEP) has been proposed to overcome this limitation and to further improve the network lifetime by modifying the CH selection thresholds in a two-level heterogeneous WSN. Simulation results establish that proposed solution ameliorates in terms of network lifetime as compared to others in stationary as well as mobile WSN scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号