首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a wireless sensor network, battery power is a limited resource on the sensor nodes. Hence, the amount of power consumption by the nodes determines the node and network lifetime. This in turn has an impact on the connectivity and coverage of the network. One way to reduce power consumed is to use a special mobile data collector (MDC) for data gathering, instead of multi-hop data transmission to the sink. The MDC collects the data from the nodes and transfers it to the sink. Various kinds of MDC approaches have been explored for different assumptions and constraints. But in all the models proposed, the data latency is usually high, due to the slow speed of the mobile nodes. In this paper, we propose a new model of mobile data collection that reduces the data latency significantly. Using a combination of a new touring strategy based on clustering and a data collection mechanism based on wireless communication, we show that the delay can be reduced significantly without compromising on the advantages of MDC based approach. Using extensive simulation studies, we analyze the performance of the proposed approach and show that the packet delay reduces by more than half when compared to other existing approaches.  相似文献   

2.
Network performance can be improved by using a mobile sink (MS) to collect sensed data in a wireless sensor network. In this paper, we design an efficient trajectory for MS, collecting data from sensor nodes in a multihop fashion, with the aim of prolonging the network lifetime. Considering event‐driven applications, we present an approach to jointly determine the optimal trajectory for MS and data paths and transmission rates from source nodes to MS, without considering any rendezvous points. In these applications, an MS is supposed to harvest the data from source nodes in a given time‐slot. We first show that this problem is in form of a mixed integer nonlinear programming model, which is NP‐hard. Then, to achieve an approximate solution, we divide the mentioned problem into 2 simple subproblems. In fact, after determining an approximate zone for the trajectory of MS, the optimal data paths and transmission rates from source nodes to the MS are obtained through a mathematical optimization model. Finally, to illustrate the efficiency of the proposed approach, we compare the performance of our algorithm to an rendezvous point–based and also the state‐of‐the‐art approach in different scenarios.  相似文献   

3.
To maximize the network lifetime of a wireless sensor network, an efficient transmission technique is critical. The energy constraint is a crucial factor in the sensor network because the sensor nodes are typically battery-run and it is impossible or difficult to recharge them in most application scenarios. Unbalanced data transference in the communication channel frequently produces an energy hole problem, which causes the premature death of the sensor nodes and reduces the network lifetime. To resolve this issue and improve the network lifetime, the proposed approach adjusts the transmission range according to the distances between the cluster heads and their members. Furthermore, a mobile data collector based on the firefly optimization algorithm is employed to increase the network lifetime. The proposed algorithm is compared with standard benchmark algorithms in several scenarios. The simulation results demonstrate that the proposed algorithm outperforms existing algorithms with respect to the network lifetime.  相似文献   

4.
5.
We propose an efficient proactive data dissemination approach that allows a mobile sink to effectively gather a representative view of a monitored region covered by n sensor nodes by visiting any m nodes, where m << n. Moreover, the proposed strategy allows the mobile sink to follow any trajectory through the deployment region, thus decoupling the data dissemination management from the mobile sink?s trajectory. Index Terms?Random walks; proactive data  相似文献   

6.
Prasannababu  D  Amgoth  Tarachand 《Wireless Networks》2022,28(8):3563-3576
Wireless Networks - Energy efficiency and data gathering are the primary goals of wireless sensor networks (WSNs), challenging. Mobile sink and mobile chargers are two promising techniques for data...  相似文献   

7.
This paper considers a field with a number of isolated wireless sensor networks served by some mobile mules and base stations (BSs). Sensing data needs to be carried by mobile mules to BSs via opportunistic contact between them. Also, such contact may not be frequent. Thus there are four types of communications in this environment: (i) inter-node communications within a WSN, (ii) opportunistic WSN-to-mule communications, (iii) opportunistic mule-to-mule communications, and (iv) opportunistic mule-to-BS communications. In such disconnected WSNs, since sensors’ memory spaces are limited and data collection from isolated WSNs to mules and then to BSs relies on opportunistic communications in the sense that contact between these entities is occasional, storing and collecting higher-priority data is necessary. Therefore, there are two critical issues to be addressed: the data storage management in each isolated WSN and opportunistic data collection between these entities. We address the storage management problem by modeling the limited memory spaces of a WSN’s sensor nodes as a distributed storage system. Assuming that there is a sink in the WSN that will be visited by mobile mules occasionally, we address three issues: (i) how to buffer sensory data to reduce data loss due to a shortage of storage spaces, (ii) if dropping of data is inevitable, how to avoid higher-priority data from being dropped, and (iii) how to manage the data nearby the sink to facilitate the downloading jobs of mules when the downloading time is unpredictable. We propose a Distributed Storage Management (DSM) strategy based on a novel shuffling mechanism similar to heap sort. It allows nodes to exchange sensory data with neighbors efficiently in a distributed manner. For the opportunistic data collection problem, based on a utility model, we then develop an Opportunistic Data Exchange (ODE) strategy to guide two mules to exchange data that would lead to a higher reward. To the best of our knowledge, this is the first work addressing distributed storage strategy for isolated WSNs with opportunistic communications using mobile mules. We conduct extensive simulations to investigate the merit of DSM and ODE. The simulation results indicate that the level of data importance collected by our DSM is very close to a global optimization and our ODE could facilitate delivery of important data to BSs through mules. We also implement these strategies in a real sensor platform, which demonstrates that the simple and lightweight protocols can achieve our goals.  相似文献   

8.
This paper presents ProFlex, a distributed data storage protocol for large-scale Heterogeneous Wireless Sensor Networks (HWSNs) with mobile sinks. ProFlex guarantees robustness in data collection by intelligently managing data replication among selected storage nodes in the network. Contrarily to related protocols in the literature, ProFlex considers the resource constraints of sensor nodes and constructs multiple data replication structures, which are managed by more powerful nodes. Additionally, ProFlex takes advantage of the higher communication range of such powerful nodes and uses the long-range links to improve data distribution by storage nodes. When compared with related protocols, we show through simulation that Proflex has an acceptable performance under message loss scenarios, decreases the overhead of transmitted messages, and decreases the occurrence of the energy hole problem. Moreover, we propose an improvement that allows the protocol to leverage the inherent data correlation and redundancy of wireless sensor networks in order to decrease even further the protocol’s overhead without affecting the quality of the data distribution by storage nodes.  相似文献   

9.
On providing location privacy for mobile sinks in wireless sensor networks   总被引:2,自引:0,他引:2  
A common practice in sensor networks is to collect sensing data and report them to the sinks or to some pre-defined data rendezvous points via multi-hop communications. Attackers may locate the sink easily by reading the destination field in the packet header or predicting the arrival of the sink at the rendezvous points, which opens up vulnerabilities to location privacy of the sinks. In this paper, we propose a random data collection scheme to protect the location privacy of mobile sinks in wireless sensor networks. Data are forwarded along random paths and stored at the intermediate nodes probabilistically in the network. The sinks will move around randomly to collect data from the local nodes occasionally, which prevents the attackers from predicting their locations and movements. We analyze different kind of attacks threatening the location privacy of the sinks in sensor networks. We also evaluate the delivery rate, data collection delay and protection strength of our scheme by both analysis and simulations. Both analytical and simulation results show that our scheme can protect location privacy of mobile sinks effectively, while providing satisfactory data collection services.  相似文献   

10.
Unattended wireless sensor networks operating in hostile environments face the risk of compromise. Given the unattended nature, sensors must safeguard their sensed data of high value temporarily. However, saving data inside a network creates security problems due to the lack of tamper‐resistance of sensors and the unattended nature of the network. In some occasions, a network controller may periodically dispatch mobile sinks to collect data. If a mobile sink is given too many privileges, it will become very attractive for attack. Thus, the privilege of mobile sinks should be restricted. Additionally, secret keys should be used to achieve data confidentiality, integrity, and authentication between communicating parties. To address these security issues, we present mAKPS, an asymmetric key predistribution scheme with mobile sinks, to facilitate the key distribution and privilege restriction of mobile sinks, and schemes for sensors to protect their collected data in unattended wireless sensor networks. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A precise localization for mobile target in wireless sensor networks is presented in this letter,where a geometrical relationship is explored to improve the location estimation for mobile target,instead of a simple centroid approach.The equations of location compensation algorithm for mobile target are derived based on linear trajectory prediction and sensor selective activation.The results based on extensive simulation experiments show that the compensation algorithm gets better performance in metrics of quality of tracking and energy efficiency with the change of sensor sensing range,the ratio of sensing range and sensor activation range,and the data sampling rate than traditional methods,which means our proposing can achieve better quality-energy tradeoff for mobile target in wireless sensor networks.  相似文献   

12.
Hawbani  Ammar  Wang  Xingfu  Kuhlani  Hassan  Karmoshi  Saleem  Ghoul  Rafia  Sharabi  Yaser  Torbosh  Esa 《Wireless Networks》2018,24(7):2723-2734
Wireless Networks - Data dissemination toward static sinks causes the nearby nodes to deplete their energy quicker than the other nodes in the field (i.e., this is referred to as the hotspot...  相似文献   

13.
Wireless Networks - Solutions for energy hole problem in wireless sensor networks (WSNs) have been excessively explored using mobile sink (MS). Although, MS provides a considerable amount of energy...  相似文献   

14.
Several studies have demonstrated the benefits of using a mobile sink (MS) to reduce energy consumption resulting from multi-hop data collection using a static sink in wireless sensor networks (WSNs). However, using MS may increase data delivery latency as it needs to visit each sensor node in the network to collect data. This is a critical issue in delay-sensitive applications where all sensed data must be gathered within a given time constraint. In this paper, we propose a distributed data gathering protocol utilizing MS for WSNs. The proposed protocol designs a trajectory for the MS, which minimizes energy consumption and delay. Our protocol operates in four main phases: data sensing, rendezvous point (RP) selection, trajectory design, and data gathering. In data sensing, a number of deployed sensor nodes keep sensing the target field for a specific period of time to capture events. Then, using a cluster-based RP selection algorithm, some sensor nodes are selected to become RPs based on local information. The selected RPs are then used to determine a trajectory for the MS. To do so, we propose three trajectory design algorithms that support different types of applications, namely reduced energy path (REP), reduced delay path (RDP), and delay bound path (DBP). The MS moves through the constructed path to accomplish its data gathering according to an effective scheduling technique that is introduced in this work. We validate the proposed protocol via extensive simulations over several metrics such as energy, delay, and time complexity.  相似文献   

15.
In wireless sensor networks, a clustering-based technique is considered as an efficient approach for supporting mobile sinks without using position information. It exploits a Backbone-based Virtual Infrastructure (BVI) which uses only cluster heads (CHs) to construct routing structures. Since sensor nodes have constrained energy and are failure-prone, the effective design of both a clustering structure to construct a BVI and a routing protocol in the BVI is an important issue to achieve energy-efficient and reliable data delivery. However, since previous studies use one-hop clustering for a BVI, they are not robust against node and link failures and thus leading low data delivery ratio. They also use flooding-based routing protocols in a BVI and thus leading high energy consumption. Thus, in this paper, we propose a rendezvous-based data dissemination protocol based on multi-hop clustering (RDDM). Since RDDM uses a multi-hop clustering to provide enough backup sensor nodes to substitute a CH and enough backup paths between neighbor CHs, it can provide high robustness against node and link failures. By using a rendezvous CH, RDDM constructs routing paths from source nodes to mobile sinks without flooding in our BVI and thus can save energy of sensor nodes. By considering movement types of sinks, RDDM finds out a shorter path between a source node and a mobile sink through signaling only between neighbor CHs and thus can reduce the energy consumption. Analysis and simulation results show that RDDM provides better performance than previous protocols in terms of energy consumption and data delivery ratio.  相似文献   

16.
In wireless sensor networks (WSNs), a mobile sink can help eliminate the hotspot effect in the vicinity of the sink, which can balance the traffic load in the network and thus improve the network performance. Location‐based routing is an effective routing paradigm for supporting sink mobility in WSNs with mobile sinks (mWSNs). To support efficient location‐based routing, scalable location service must be provided to advertise the location information of mobile sinks in an mWSN. In this paper, we propose a new hierarchical location service for supporting location‐based routing in mWSNs. The proposed location service divides an mWSN into a grid structure and exploits the characteristics of static sensors and mobile sinks in selecting location servers. It can build, maintain, and update the grid‐spaced network structure via a simple hashing function. To reduce the location update cost, a hierarchy structure is built by choosing a subset of location servers in the network to store the location information of mobile sinks. The simulation results show that the proposed location service can significantly reduce the communication overhead caused by sink mobility while maintaining high routing performance, and scales well in terms of network size and sink number. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
With decrease in the cost and the size of sensor devices, we can envision a world of ubiquitous sensor networks. Usually, sensor data needs to be disseminated from the source to data collectors, making the spatially distributed sensor data available for applications. The widespread and ubiquitous nature of mobile devices, e.g., PDAs and cell phones around the world, makes them attractive to be used as mobile data collectors (MDCs) to collect and deliver the sensor data. The goal of this work is to design a dissemination protocol that leads to efficient data delivery from the source sensors to ubiquitous MDCs. We propose the Wait-Focus-Spray (WFS) data delivery scheme for wireless sensor networks with ubiquitous MDCs. The main objective of WFS is to balance the data delivery latency and transmission overhead when considering the existence of ubiquitous MDCs. In WFS, we also propose a corresponding mechanism-probabilistic scattered binary spraying (PSBS), to reduce the spatial redundancy when spraying data copies, which can increase the probability of meeting a MDC. We then present an analytical model based on the Markov chain model to analyze the trade-off between delivery latency and transmission cost in WFS. Through extensive simulations, we demonstrate that our proposed scheme reduces the transmission cost per message while provides comparable delivery delay compared with the alternative approach.  相似文献   

18.
Monte Carlo localization for mobile wireless sensor networks   总被引:5,自引:0,他引:5  
Aline  Koen   《Ad hoc Networks》2008,6(5):718-733
Localization is crucial to many applications in wireless sensor networks. In this article, we propose a range-free anchor-based localization algorithm for mobile wireless sensor networks that builds upon the Monte Carlo localization algorithm. We concentrate on improving the localization accuracy and efficiency by making better use of the information a sensor node gathers and by drawing the necessary location samples faster. To do so, we constrain the area from which samples are drawn by building a box that covers the region where anchors’ radio ranges overlap. This box is the region of the deployment area where the sensor node is localized. Simulation results show that localization accuracy is improved by a minimum of 4% and by a maximum of 73% (average 30%), for varying node speeds when considering nodes with knowledge of at least three anchors. The coverage is also strongly affected by speed and its improvement ranges from 3% to 55% (average 22%). Finally, the processing time is reduced by 93% for a similar localization accuracy.  相似文献   

19.
A routing scheme for wireless sensor networks with mobile sensors and mobile multiple sinks is proposed and studied. The scheme is based on expanding ring search, anycast messaging and reactive mode with maintaining route state information in sensors. As a result of a successful routing request issued by the sensor, it becomes a member of a routing tree with some sink as a root. Anycast messaging is used only at the stage of establishing a path from a sensor to a sink. Replies from sinks are always forwarded in unicast mode. This considerably reduces network traffic and, as a result, energy consumption by sensors. To take into account routing conditions for network nodes in receiving messages from different directions, the receiving area of each node is assumed to consist of a number of sectors, considered as independent links with random change of link states in time. The proposed routing scheme was investigated with the use of a detailed simulation model, implemented in terms of a class of extended Petri nets. In simulation the following performance metrics were investigated versus time-to-live value: response ratio, relative network traffic and relative energy consumption. These metrics were considered for a number of combinations of parameters, such as the number of sinks, sensor availability and link availability. The results of simulation were compared with published characteristics of a similar model, in which sensors do not maintain any routing state information, and is proved to outperform it.  相似文献   

20.
A new distributed node localization algorithm named mobile beacons-improved particle filter (MB-IPF) was proposed. In the algorithm, the mobile nodes equipped with globe position system (GPS) move around in the wireless sensor network (WSN) field based on the Gauss-Markov mobility model, and periodically broadcast the beacon messages. Each unknown node estimates its location in a fully distributed mode based on the received mobile beacons. The localization algorithm is based on the IPF and several refinements, including the proposed weighted centroid algorithm, the residual resampling algorithm, and the markov chain monte carlo (MCMC) method etc., which were also introduced for performance improvement. The simulation results show that our proposed algorithm is efficient for most applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号