首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper,we present a non-transferable utility coalition graph game(NTU-CGG) based resource allocation scheme with relay selection for a downlink orthogonal frequency division multiplexing(OFDMA) based cognitive radio networks to maximize both system throughput and system fairness.In this algorithm,with the assistance of others SUs,SUs with less available channels to improve their throughput and fairness by forming a directed tree graph according to spectrum availability and traffic demands of SUs.So this scheme can effectively exploit both space and frequency diversity of the system.Performance results show that,NTU-CGG significantly improves system fairness level while not reducing the throughput comparing with other existing algorithms.  相似文献   

2.
石露露  杨守义  张瑞哲  李燕 《电讯技术》2016,56(12):1310-1315
考虑到无线电频谱资源日益紧缺,提出了一种基于组间组内协作传输的多播组新机制,涉及多个多播组并使用同一频谱资源以协作方式传输信息。基于认知无线网络中该机制,研究了系统的资源优化配置,理论分析得出了功率分配方案,进而讨论了系统加权总传输速率的优化,同时考虑了主用户和认知用户之间信号干扰及功率限制对传输速率的影响,最优化用户性能。仿真结果表明,优化方案下多播组传输速率随用户人数的增加而上升,达到最优化用户服务质量;当功率限制时,通过设置加权因子,能够保证主用户拥有良好的通信性能。  相似文献   

3.
Cognitive radio networks (CRN) are currently gaining immense recognition as the most-likely next-generation wireless communication paradigm, because of their enticing promise of mitigating the spectrum scarcity and/or underutilisation challenge. Indisputably, for this promise to ever materialise, CRN must of necessity devise appropriate mechanisms to judiciously allocate their rather scarce or limited resources (spectrum and others) among their numerous users. ‘Resource allocation (RA) in CRN', which essentially describes mechanisms that can effectively and optimally carry out such allocation, so as to achieve the utmost for the network, has therefore recently become an important research focus. However, in most research works on RA in CRN, a highly significant factor that describes a more realistic and practical consideration of CRN has been ignored (or only partially explored), i.e., the aspect of the heterogeneity of CRN. To address this important aspect, in this paper, RA models that incorporate the most essential concepts of heterogeneity, as applicable to CRN, are developed and the imports of such inclusion in the overall networking are investigated. Furthermore, to fully explore the relevance and implications of the various heterogeneous classifications to the RA formulations, weights are attached to the different classes and their effects on the network performance are studied. In solving the developed complex RA problems for heterogeneous CRN, a solution approach that examines and exploits the structure of the problem in achieving a less-complex reformulation, is extensively employed. This approach, as the results presented show, makes it possible to obtain optimal solutions to the rather difficult RA problems of heterogeneous CRN.  相似文献   

4.
徐勇军  赵晓晖 《通信学报》2014,35(4):14-129
摘 要:针对多用户下垫式认知无线电网络中参数不确定性问题,提出了一种顽健分布式功率控制算法。在干扰温度门限和次用户信干噪比(SINR)的约束下,考虑信道不确定性,实现认知系统功率消耗最小化。基于欧几里得球形不确定性描述,利用拉格朗日对偶分解理论给出了顽健功率控制问题的解。仿真结果表明,该顽健功率分配算法能同时满足主用户和次用户的QoS需求,与非顽健算法和传统SOCP算法对比可提升系统性能。  相似文献   

5.
In this paper, we study the resource allocation problem in multiuser Orthogonal Frequency Division Multiplexing (OFDM)-based cognitive radio networks. The interference introduced to Primary Users (PUs) is fully considered, as well as a set of proportional rate constraints to ensure fairness among Secondary Users (SUs). Since it is extremely computationally complex to obtain the optimal solution because of integer constraints, we adopt a two-step method to address the formulated problem. Firstly, a heuristic subchannel assignment is developed based on the normalized capacity of each OFDM subchannel by jointly considering channel gain and the interference to PUs, which approaches a rough proportional fairness and removes the intractable integer constraints. Secondly, for a given subchannel assignment, we derive a fast optimal power distribution algorithm that has a complexity of O(L 2 N) by exploiting the problem’s structure, which is much lower than standard convex optimization techniques that generally have a complexity of O((N + K)3), where NL and K are the number of subchannels, PUs and SUs, respectively. We also develop a simple power distribution algorithm with complexity of only O(L + N), while achieving above 90 % sum capacity of the upper bound. Experiments show that our proposed algorithms work quite well in practical wireless scenarios. A significant capacity gain is obtained and the proportional fairness is satisfied perfectly.  相似文献   

6.
In adaptive channel allocation for secondary user(SU) of cognitive radio(CR) system,it is necessary to consider allocation process from the temporal perspective.In this article,a chain store game is modeled to achieve SU's equilibrium state.Due to the computational complexity of solving equilibrium states,the authors explore the correlated equilibrium(CE) by importing signal mechanisms based on time and sequence number.Also,correlated equilibrium based game algorithms are presented.Simulations show that the...  相似文献   

7.
Cognitive Radio (CR) is a promising technique for the next generation mobile communication system for its capability to solve the conflicts between the scarcity and underutilization of spectrum. In this paper, aiming at maximizing the system capacity of a multi-antenna CR system on the premise that avoid interference to the primary system in the same band simultaneously, a resource allocation method which is able to avoid interference between PRimary (PR) and CR users by projecting the transmit signals of CR users on the null space of the PR users’ channels is proposed. CR users with better channel condition are selected, and the interference from CR system to PR users can be removed completely by projecting the transmit signals of CR system on the null-space of PR users’ channels. Parallel sub-channels are constructed for CR users through Singular Value Decomposition (SVD). At last, waterfilling is also adopted to increase the CR users’ capacity. Simulation result demonstrates that compared with existing methods, our method can improve the achievable sum rate of CR users as well as reduce the outage probability of PR users.  相似文献   

8.
In cognitive radio networks, signal to interference plus noise ratio (SINR) is a quantity that is used to analyze the bounds of the capacity of a channel. This is the reason for SINR being one of the important parameters toward evaluating the performance of spectrum sharing in every network. To maximize the channel utilization in any network, the SINR of a channel should be considered to be within a threshold. This also leads to lesser power consumption, and the quality of service for the licensed users is maintained. Further, reduced SINR leads to an improvement in the quality of communication in the network. In this paper, a graph theoretic measure for the efficient utilization of channels in cognitive radio networks has been proposed and is named as channel criticality based resource allocation (CCRA). Using the SINR as the weight of the graph, a novel concept of channel criticality has also been introduced in this work. The proposed CCRA technique has also been compared with the existing interference aware channel assignment (IACA) technique in terms of the channel utilization. Through simulations, the CCRA has been observed to outperform the IACA scheme. The average channel utilization of the proposed CCRA was observed to have increased by 8%, when the secondary users were introduced in the network as compared with the IACA technique. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
In adaptive channel allocation for secondary user (SU) of cognitive radio (CR) system, it is necessary to consider allocation process from the temporal perspective. In this article, a chain store game is modeled to achieve SU's equilibrium state. Due to the computational complexity of solving equilibrium states, the authors explore the correlated equilibrium (CE) by importing signal mechanisms based on time and sequence number. Also, correlated equilibrium based game algorithms are presented. Simulations show that these algorithms are superior to other allocation algorithms both in channel utilization and communication time.  相似文献   

10.
Spectrum sensing is a key technique for determining the spectrum available in cognitive radio (CR) networks. In this paper, we study how to jointly optimize sensing time and resource allocation to maximize the sum transmission rate of all CR users of a multichannel CR network. We take into consideration the transmission power and interference constraints to protect primary users from harmful interference, as well as constraints of detection probability and false alarm probability. Under these constraints, we propose an asymptotically optimal resource allocation algorithm. The optimal sensing time can be obtained using the traditional one‐dimensional exhaustive search. However, owing to the high complexity of searching for the sensing time, we propose a simplified method to get the optimal sensing time under the assumption that false alarm probability is small. Simulation results show that the simplified method can obtain the optimal sensing time efficiently under strict constraint of false alarm probability. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
We consider the problem of cooperative spectrum sharing among primary users (PUs) and secondary users (SUs) in cognitive radio networks. In our system, each PU selects a proper set of SUs to serve as the cooperative relays for its transmission and in return, leases portion of channel access time to the selected SUs for their own transmission. PU decides how to select SUs and how much time it would lease to SUs, and the cooperative SUs decide their respective power levels in helping PU's transmission, which are proportional to their access times. We assume that both PUs and SUs are rational and selfish. In single‐PU scenario, we formulate the problem as a noncooperative game and prove that it converges to a unique Stackelberg equilibrium. We also propose an iterative algorithm to achieve the unique equilibrium point. We then extend the proposed cooperative mechanism to a multiple‐PU scenario and develop a heuristic algorithm to assign proper SUs to each PU considering both performance and fairness. The simulation results show that when the competition among SUs is fierce, the performance gap between our heuristic algorithm and the optimal one is smaller than 3%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
This article proposes a novel dynamic spectrum sharing scheme in distributed multi-band cognitive radio networks. A non-cooperative game has been utilized to model the spectrum sharing among secondary base stations (SBSs). A distributed joint spectrum detection and power allocation algorithm is designed for maximizing the downlink throughput of secondary networks. Simulation results demonstrate that the proposed algorithm converges fast and achieves a better throughput performance than uniform threshold case. Meanwhile, the convergence of algorithm is proved by Nikaido-Isoda (N-I) function method.  相似文献   

13.
In this paper, we study a coalitional game approach to resource allocation in a multi-channel cooperative cognitive radio network with multiple primary users (PUs) and secondary users (SUs). We propose to form the grand coalition by grouping all PUs and SUs in a set, where each PU can lease its spectrum to all SUs in a time-division manner while the SUs in return assist PUs’ data transmission as relays. We use the solution concept of the core to analyze the stability of the grand coalition, and the solution concept of the Shapley value to fairly divide the payoffs among the users. Due to the convexity of the proposed game, the Shapley value is shown to be in the core. We derive the optimal strategy for the SU, i.e., transmitting its own data or serving as a relay, that maximizes the sum rate of all PUs and SUs. The payoff allocations according to the core and the Shapley value are illustrated by an example, which demonstrates the benefits of forming the grand coalition as compared with non-coalition and other coalition schemes.  相似文献   

14.
根据无线认知中继网络上、下行链路子载波的信道特性,研究认知网络的频谱资源分配,提出一种上、下行链路子载波联合优化的分配算法。该算法根据子信道增益差值因子的大小分配下行链路子载波,以源节点和中继节点功率最小化为优化目标配对上行链路子载波,以用户的实时需求分配子载波的比特和功率,有效降低了系统的发射功率,提高了系统吞吐量。仿真结果表明,与启发—集中式和分布式辅助反馈传输功率分配算法比较,该联合优化算法的单位比特功耗降低了1.5~3 dBμW,误比特率性能提高了1个数量级左右。  相似文献   

15.
Both spectrum sensing and power allocation have crucial effects on the performance of wireless cognitive ad hoc networks. In order to obtain the optimal available subcarrier sets and transmission powers, we propose in this paper a distributed resource allocation framework for cognitive ad hoc networks using the orthogonal frequency division multiple access (OFDMA) modulation. This framework integrates together the constraints of quality of service (QoS), maximum powers, and minimum rates. The fairness of resource allocation is guaranteed by introducing into the link capacity expression the probability that a subcarrier is occupied. An incremental subgradient approach is applied to solve the optimization problems that maximize the weighted sum capacities of all links without or with fairness constraints. Distributed subcarrier selection and power allocation algorithms are presented explicitly. Simulations confirm that the approach converges to the optimal solution faster than the ordinary subgradient method and demonstrate the effects of the key parameters on the system performance. It has been observed that the algorithms proposed in our paper outperform the existing ones in terms of the throughput and number of secondary links admitted and the fairness of resource allocation.  相似文献   

16.
Spectrum sensing is an initial task for the successful operation of cognitive radio networks (CRN). During cooperative spectrum sensing, malicious secondary user (SU) may report false sensing data which would degrade the final aggregated sensing outcome. In this paper, we propose a distributed cooperative spectrum sensing (CSS) method based on reinforcement learning (RL) to remove data fusion between users with different reputations in CRN. This method regards each SU as an agent, which is selected from the adjacent nodes of CRN participating in CSS. The reputation value is used as reward to ensure that the agent tends to merge with high reputation nodes. The conformance fusion is adopted to promote consensus of the whole network, while it’s also compared with the decision threshold to complete CSS. Simulation results show that the proposed method can identify malicious users effectively. As a result, the whole CRN based on RL is more intelligent and stable.  相似文献   

17.
Cooperative relay to improve diversity in cognitive radio networks   总被引:5,自引:0,他引:5  
Recent studies demonstrated that dynamic spectrum access can improve spectrum utilization significantly by allowing secondary unlicensed users to dynamically share the spectrum that is not used by the primary licensed users. Cognitive radio was proposed to promote the spectrum utilization by opportunistically exploiting the existence of spectrum ?holes.? Meanwhile, cooperative relay technology is regarded widely as a key technology for increasing transmission diversity gain in various types of wireless networks, including cognitive radio networks. In this article, we first give a brief overview of the envisioned applications of: cooperative relay technology to CRNs, cooperative transmission of primary traffic by secondary users, cooperative transmission between secondary nodes to improve spatial diversity, and cooperative relay between secondary nodes to improve spectrum diversity. As the latter is a new direction, in this article we focus on this scenario and investigate a simple wireless network, where a spectrum-rich node is selected as the relay node to improve the performance between the source and the destination. With the introduction of cooperative relay, many unique problems should be considered, especially the issue for relay selection and spectrum allocation. To demonstrate the feasibility and performance of cooperative relay for cognitive radio, a new MAC protocol was proposed and implemented in a universal software radio peripheral-based testbed. Experimental results show that the throughput of the whole system is greatly increased by exploiting the benefit of cooperative relay.  相似文献   

18.
Cognitive radio makes it possible for an unlicensed user to access a spectrum unoccupied by licensed users. In cognitive radio networks, extra constraints on interference temperature need to be introduced into radio resource allocation. In this paper, the uplink radio resource allocation is investigated for OFDMA‐based cognitive radio networks. In consideration of the characteristics of cognitive radio and OFDMA, an improved water‐filling power allocation scheme is proposed under the interference temperature constraints for optimal performance. Based on the improved water‐filling power allocation, a simple subcarrier allocation algorithm for uplink is proposed. The subcarrier allocation rules are obtained by theoretical deduction. In the uplink subcarrier allocation algorithm, the subcarriers are allocated to the users with the best channel quality initially and then adjusted to improve the system performance. A cursory water‐filling level estimation method is used to decrease the complexity of the algorithm. Asymptotic performance analysis gives a lower bound of the stability of the water‐filling level estimation. The complexity and performance of the proposed radio resource allocation scheme are investigated by theoretical analysis and numerical results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
梁辉  赵晓晖 《通信学报》2011,32(11):44-50
受组合投资理论的启发,提出了一种既利用历史信道状态信息,同时又有效保证主用户不受次系统传输所产生干扰的新的资源分配算法.该算法以系统速率的方差作为优化目标,同时通过引入用户间干扰门限来衡量次系统对主用户造成的干扰,并利用二次规划的方法对该问题进行求解.最后,给出经典算法与本算法的性能比较,仿真结果表明该算法在保证次系统传输速率保持在一定的期望速率的条件下,使其方差最小,同时又使主用户所受的干扰限定在所能承受的范围内.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号