首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wireless mesh networks (WMNs) have become a promising solution for quick and low-cost spreading of Internet accesses and other network services. Given the mesh topology, multiple paths are often available between node pairs, which thus naturally endorse path-diversified transmission. Unfortunately, like in wired networks, discovering completely disjoint paths in a WMN remains an intractable problem. It indeed becomes more challenging given the interferences across wireless channels in a WMN, not to mention that applications may demand heterogeneous QoS optimizations across different paths. The availability of multiple channels in advanced WMNs however sheds new lights into this problem. In this paper, we show that, as long as the best channels with different QoS metrics are not overlapped between neighboring node pairs, complete disjoint paths with heterogeneous QoS targets are available in a multi-channel WMN. We present efficient solutions to discover such paths, particularly for bandwidth- and delay-optimization. We also develop novel algorithms for accurately estimating path bandwidth and delay in the multi-channel environment. These lead to the design of a practical protocol that extends the classical Ad hoc On-demand Multi-path Distance Vector (AOMDV). Through extensive simulations, we show that our protocol yields significant improvement over state-of-the-art multi-path protocols in terms of both end-to-end throughput and delay.  相似文献   

2.
Wireless mesh networks (WMNs) provide Internet access to remote areas and wireless connections on a metropolitan scale. In this paper, we focus on the problem of improving the gateway throughput in WMNs while achieving fairness and supporting quality-of-service (QoS) differentiation for end-users. To address this problem, we propose a new distributed dynamic traffic scheduling algorithm that supports different QoS requirements from different users. We also develop a joint weight-aware channel assignment and minimum expected delay routing mechanism. Simulation results demonstrate the performance of the proposed work in terms of the achieved throughput and minimized packet loss ratio and delay.  相似文献   

3.
The convergence of optical and wireless technologies may offer a compelling network access infrastructure because these technologies combine major benefits such as large coverage in the wireless part and huge bandwidth in the optical part of the converged access network. The convergence of the passive optical networks with 4G wireless standards, such as the Worldwide Interoperability for Microwave Access and the Long Term Evolution, constitutes a quite attractive solution to meet the challenges of the modern bandwidth‐hungry access networks. One of the most important objective a modern access network has to address is the adequate bandwidth distribution to the final users. In addition, several other aims are emerged towards this goal, such as fairness and quality of service provisioning. The adversity of designing an efficient bandwidth distribution scheme for hybrid optical‐wireless access networks lies in the interdependence of both domains: the bandwidth distribution in the wireless domain depends on the optical transmission grant opportunities, while the bandwidth coordinator in the optical part has to be aware of the mobile user heterogeneity in the wireless domain. Moreover, the bandwidth decision‐making module in both networks has to be aware of providing a fair allocation independently of the number of mobile users or the traffic requests in the network. In this work, we endeavor to address the aforementioned challenges. A novel, fair, and efficient bandwidth distribution scheme is proposed for hybrid optical‐wireless access networks. By using weighted fairness provisioning techniques, the proposed scheme intends to alleviate the interdependence of the two domains, offering a fair and efficient bandwidth distribution to the mobile users. The weights are properly defined, by utilizing suitable optimization techniques such as the Lagrange multiplies, so as to incorporate the underlying features of each traffic requests, such as the population density and the propagation delay. Extensive simulation results indicate the capability of the proposed scheme, compared with other competitive allocation schemes, in provisioning a more efficient and fair bandwidth distribution in terms of latency, throughput, and packet drop ratio. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Interference is a fundamental issue in wireless mesh networks (WMNs) and it seriously affects the network performance. In this paper we characterize the power interference in IEEE 802.11 CSMA/CA based wireless mesh networks using directional antennas. A model based centralized call admission control (CAC) scheme is proposed which uses physical collision constraints, and transmitter-side, receiver-side and when-idle protocol collision prevention constraints. The CAC assists to manage requests from users depending on the available bandwidth in the network: when a new virtual link establishment request from a user is accepted into the network, resources such as interface, bandwidth, transmission power and channel are allocated in the participating nodes and released once the session is completed. The proposed CAC is also able to contain the interference in the WMN by managing the transmission power of nodes.  相似文献   

5.
Wireless mesh network (WMN) is emerging as an important networking architecture for future wireless communications. The mesh mode supported in IEEE 802.16 protocol provides a TDMA solution for WMN, in which scheduling is an important issue. In this paper, we discuss the issues on how to satisfy a set of bandwidth requests in IEEE 802.16 WMNs using minimal radio resources (or solving minimal schedule length problem). In consideration of transmission overhead and adaptive modulation and coding (AMC), two cross-layer scheduling algorithms are proposed, namely max-transmission and priority-based algorithms. In particular, they are proposed based on a physical interference model, instead of a protocol interference model as suggested in the literature. For the priority-based algorithm, we study several priority criteria based on different cross-layer information. An iterative scheme for QoS traffic is introduced to guarantee fairness when traffic load exceeds the network capacity. Simulation results show that our algorithms outperform the existing schemes based on protocol model, and they also ensure better fairness among different nodes.  相似文献   

6.
In this paper, we study joint rate control, routing and scheduling in multi-channel wireless mesh networks (WMNs), which are traditionally known as transport layer, network layer and MAC layer issues respectively. Our objective is to find a rate allocation along with a flow allocation and a transmission schedule for a set of end-to-end communication sessions such that the network throughput is maximized, which is formally defined as the maximum throughput rate allocation (MRA) problem. As simple throughput maximization may result in a severe bias on rate allocation, we take account of fairness based on a simplified max-min fairness model and the proportional fairness models. We define the max-min guaranteed maximum throughput rate allocation (MMRA) problem and proportional fair rate allocation (PRA) problem. We present efficient linear programming (LP) and convex programming (CP) based schemes to solve these problems. Numerical results show that proportional fair rate allocation schemes achieves a good tradeoff between throughput and fairness.  相似文献   

7.
In recent time, a great deal of research effort has been directed toward promptly facilitating post-disaster communication by using wireless mesh networks (WMNs). WMN technology has been considered to be effectively exploited for this purpose as it provides multi-hop communication through an access network comprising wireless mesh routers, which are connected to the Internet through gateways (GWs). One of the critical challenges in using WMNs for establishing disaster-recovery networks is the issue of distributing traffic among the users in a balanced manner in order to avoid congestion at the GWs. To overcome this issue, we envision a disaster zone WMN comprising a network management center. First, we thoroughly investigate the problem of traffic load balancing amongst the GWs in our considered disaster zone WMN. Then, we develop traffic load distribution techniques from two perspectives. Our proposal from the first perspective hinges upon a balanced distribution of the bandwidth to be allocated per user. On the other hand, our second perspective considers the dynamic (i.e., varying) bandwidth demands from the disaster zone users that requires a more practical and refined distribution of the available bandwidth by following an intelligent forecasting method. The effectiveness of our proposals is evaluated through computer-based simulations.  相似文献   

8.
An Effective QoS Differentiation Scheme for Wireless Mesh Networks   总被引:1,自引:0,他引:1  
Wireless mesh networking is emerging as an important architecture for future-generation wireless communications systems. Quality of service provisioning is a challenging issue in WMNs. In this article we study an effective QoS differentiation scheme for IEEE 802.16 WiMAX mesh networks. Both collocated and general topologies are exploited. Illustrative numerical examples are presented to demonstrate the effectiveness of the proposed strategy. The impact of key parameters on performance is discussed for differentiating various services. Moreover, with the proposed scheme, WMN scalability can be greatly improved. The challenges with respect to the integration of WMN and cooperative transmission are discussed, and the fairness problem is addressed with potential solutions.  相似文献   

9.
As new network applications have arisen rapidly in recent years, it is becoming more difficult to predict the exact traffic pattern of a network. In consequence, a routing scheme based on a single traffic demand matrix often leads to a poor performance. Oblivious routing (Racke in Proceedings of the 43rd annual IEEE symposium on foundations of computer science 43–52, 2002) is a technique for tackling the traffic demand uncertainty problem. A routing scheme derived from this principle intends to achieve a predicable performance for a set of traffic matrixes. Oblivious routing can certainly be an effective tool to handle traffic demand uncertainty in a wireless mesh network (WMN). However, a WMN has an additional tool that a wireline network does not have: dynamic bandwidth allocation. A router in a WMN can dynamically assign bandwidth to its attached links. This capability has never been exploited previously in works on oblivious routing for a spatial time division multiple access (STDMA) based WMN. Another useful insight is that although it is impossible to know the exact traffic matrix, it is relatively easy to estimate the amount of the traffic routed through a link when the routing scheme is given. Based on these two insights, we propose a new oblivious routing framework for STDMA WMNs. Both analytical models and simulation results are presented in this paper to prove that the performance—in terms of throughput, queue lengths, and fairness—of the proposed scheme can achieve significant gains over conventional oblivious routing schemes for STDMA based WMNs.  相似文献   

10.
A wireless mesh network (WMN) is a type of communication network made up of wireless devices and organized in a mesh topology. Multicast is a fundamental service in WMNs because it efficiently distributes data among a group of nodes. Multicast algorithms in WMNs are designed to maximize system throughput and minimize delay in order to satisfy the end users?? requirement. Previous work has unrealistically assumed that the underlying WMN is link-homogeneous. We consider one important form of link heterogeneity: different link loss ratios, or equivalently different ETX. Different from other work addressing multicast in wireless networks, we point out that the local broadcast quality relies on the worst involved link. We model different link loss ratios by defining a new graph theory problem, Heterogeneous Weighted Steiner Connected Dominating Set (HW-SCDS), on an edge-weighted directed graph, where the edge weights model ETX, the reciprocal of link loss ratios. We minimize the number of transmissions in a multicast by computing a minimum HW-SCDS in the edge-weighted graph. We prove that HW-SCDS is NP-hard and devise a greedy algorithm for it. To improve the effectiveness of our algorithm, we design a dedicated channel assignment algorithm. Simulations show that our algorithm significantly outperforms the current best WMN multicast algorithm by both increasing throughput and reducing delay.  相似文献   

11.
Joint scheduling and power control schemes have previously been proposed to reduce power dissipation in wireless ad hoc networks. However, instead of power consumption, throughput is a more important performance concern for some emerging multihop wireless networks, such as wireless mesh networks. This paper examines joint link scheduling and power control with the objective of throughput improvement. The MAximum THroughput link Scheduling with Power Control (MATH-SPC) problem is first formulated and then a mixed integer linear programming (MILP) formulation is presented to provide optimal solutions. However, simply maximizing the throughput may lead to a severe bias on bandwidth allocation among links. To achieve a good tradeoff between throughput and fairness, a new parameter called the demand satisfaction factor (DSF) to characterize the fairness of bandwidth allocation and formulate the MAximum Throughput fAir link Scheduling with Power Control (MATA-SPC) problem is defined. An MILP formulation and an effective polynomial-time heuristic algorithm, namely, the serial linear programming rounding (SLPR) heuristic, to solve the MATA-SPC problem are also presented. Numerical results show that bandwidth can be fairly allocated among all links/flows by solving the MILP formulation or by using the heuristic algorithm at the cost of a minor reduction of network throughput. In addition, extensions to end-to-end throughput and fairness and multiradio wireless multihop networks are discussed.  相似文献   

12.
IEEE 802.16 and Ethernet Passive Optical Network (EPON) are two promising broadband access technologies for high-capacity wireless access networks and wired access networks, respectively. They each can be deployed to facilitate connection between the end users and the Internet but each of them suffers from some drawbacks if operating separately. To combine the bandwidth advantage of optical networks with the mobility feature of wireless communications, we propose a convergence of EPON and 802.16 networks in this paper. First, this paper starts with presenting the converged network architecture and especially the concept of virtual ONU-BS (VOB). Then, it identifies some unique research issues in this converged network. Second, the paper investigates a dynamic bandwidth allocation (DBA) scheme and its closely associated research issues. This DBA scheme takes into consideration the specific features of the converged network to enable a smooth data transmission across optical and wireless networks, and an end-toend differentiated service to user traffics of diverse QoS (Quality of Service) requirements. This QoS-aware DBA scheme supports bandwidth fairness at the VOB level and class-of-service fairness at the 802.16 subscriber station level. The simulation results show that the proposed DBA scheme operates effectively and efficiently in terms of network throughput, average/maximum delay, resource utilization, service differentiation, etc.  相似文献   

13.
Asymptotic Capacity of Infrastructure Wireless Mesh Networks   总被引:1,自引:0,他引:1  
An infrastructure wireless mesh network (WMN) is a hierarchical network consisting of mesh clients, mesh routers and gateways. Mesh routers constitute a wireless mesh backbone, to which mesh clients are connected as a star topology, and gateways are chosen among mesh routers providing Internet access. In this paper, the throughput capacity of infrastructure WMNs is studied. For such a network with Nc randomly distributed mesh clients, Nr regularly placed mesh routers and Ng gateways, assuming that each mesh router can transmit at W bits/s, the per-client throughput capacity has been derived as a function of Nc , Nr , Ng and W . The result illustrates that, in order to achieve high capacity performance, the number of mesh routers and the number of gateways must be properly chosen. It also reveals that an infrastructure WMN can achieve the same asymptotic throughput capacity as that of a hybrid ad hoc network by choosing only a small number of mesh routers as gateways. This property makes WMNs a very promising solution for future wireless networking.  相似文献   

14.
Intrusion is any unwanted activity that can disrupt the normal functions of wired or wireless networks. Wireless mesh networking technology has been pivotal in providing an affordable means to deploy a network and allow omnipresent access to users on the Internet. A multitude of emerging public services rely on the widespread, high-speed, and inexpensive connectivity provided by such networks. The absence of a centralized network infrastructure and open shared medium makes WMNs particularly susceptible to malevolent attacks, especially in multihop networks. Hence, it is becoming increasingly important to ensure privacy, security, and resilience when designing such networks. An effective method to detect possible internal and external attack vectors is to use an intrusion detection system. Although many Intrusion Detection Systems (IDSs) were proposed for Wireless Mesh Networks (WMNs), they can only detect intrusions in a particular layer. Because WMNs are vulnerable to multilayer security attacks, a cross-layer IDS are required to detect and respond to such attacks. In this study, we analyzed cross-layer IDS options in WMN environments. The main objective was to understand how such schemes detect security attacks at several OSI layers. The suggested IDS is verified in many scenarios, and the experimental results show its efficiency.  相似文献   

15.
Single-channel based wireless networks have limited bandwidth and throughput and the bandwidth utilization decreases with increased number of users. To mitigate this problem, simultaneous transmission on multiple channels is considered as an option. In this paper, we propose a distributed dynamic channel allocation scheme using adaptive learning automata for wireless networks whose nodes are equipped with single-radio interfaces. The proposed scheme, Adaptive Pursuit learning automata runs periodically on the nodes, and adaptively finds the suitable channel allocation in order to attain a desired performance. A novel performance index, which takes into account the throughput and the energy consumption, is considered. The proposed learning scheme adapts the probabilities of selecting each channel as a function of the error in the performance index at each step. The extensive simulation results in static and mobile environments provide that the proposed channel allocation schemes in the multiple channel wireless networks significantly improves the throughput, drop rate, energy consumption per packet and fairness index—compared to the 802.11 single-channel, and 802.11 with randomly allocated multiple channels. Also, it was demonstrated that the Adaptive Pursuit Reward-Only (PRO) scheme guarantees updating the probability of the channel selection for all the links—even the links whose current channel allocations do not provide a satisfactory performance—thereby reducing the frequent channel switching of the links that cannot achieve the desired performance.  相似文献   

16.
Fairness provisioning in IEEE 802.11s EDCA based Wireless Mesh Networks (WMNs) is a very challenging task due to relayed traffic and traffic load variation among mesh routers. Because of bursty traffic in general purpose community wireless mesh networks, proportional fairness is more suited than max–min fairness, where mesh routers and clients should get channel access proportional to their traffic load. However, proportional fairness is hard to achieve by solving optimization function because of non-linearity and non-concave property of the objective function. In this paper, a probabilistic approach is proposed to provide proportional fairness without solving global non-linear and non-concave optimization. Every mesh node use a load estimation strategy to estimate total traffic load that it needs to forward. The required channel share of a mesh node should be proportional to its traffic load, whereas, the total normalized channel share for all the contending mesh nodes should be kept less than unity to satisfy the clique constraint. The network architecture and contention property in WMN are explored to deduce the required channel share of mesh nodes. A probabilistic approach is used to tune the contention window based on the difference between actual channel share and required channel share, so that the node with more traffic load gets more channel share. A discrete time Markov Chain based modeling is used to deduce the overall network throughput for the proposed scheme. Simulation result shows that the proposed scheme works better than the standard IEEE 802.11s based EDCA MAC in terms of fairness and throughput.  相似文献   

17.
Wireless mesh networks (WMNs) have been proposed to provide cheap, easily deployable and robust Internet access. The dominant Internet-access traffic from clients causes a congestion bottleneck around the gateway, which can significantly limit the throughput of the WMN clients in accessing the Internet. In this paper, we present MeshCache, a transparent caching system for WMNs that exploits the locality in client Internet-access traffic to mitigate the bottleneck effect at the gateway, thereby improving client-perceived performance. MeshCache leverages the fact that a WMN typically spans a small geographic area and hence mesh routers are easily over-provisioned with CPU, memory, and disk storage, and extends the individual wireless mesh routers in a WMN with built-in content caching functionality. It then performs cooperative caching among the wireless mesh routers.We explore two architecture designs for MeshCache: (1) caching at every client access mesh router upon file download, and (2) caching at each mesh router along the route the Internet-access traffic travels, which requires breaking a single end-to-end transport connection into multiple single-hop transport connections along the route. We also leverage the abundant research results from cooperative web caching in the Internet in designing cache selection protocols for efficiently locating caches containing data objects for these two architectures. We further compare these two MeshCache designs with caching at the gateway router only.Through extensive simulations and evaluations using a prototype implementation on a testbed, we find that MeshCache can significantly improve the performance of client nodes in WMNs. In particular, our experiments with a Squid-based MeshCache implementation deployed on the MAP mesh network testbed with 15 routers show that compared to caching at the gateway only, the MeshCache architecture with hop-by-hop caching reduces the load at the gateway by 38%, improves the average client throughput by 170%, and increases the number of transfers that achieve a throughput greater than 1 Mbps by a factor of 3.  相似文献   

18.
Wireless mesh networks (WMNs) have been the recent advancements and attracting more academicians and industrialists for their seamless connectivity to the internet. Radio resource is one among the prime resources in wireless networks, which is expected to use in an efficient way especially when the mobile nodes are on move. However, providing guaranteed quality of service to the mobile nodes in the network is a challenging issue. To accomplish this, we propose 2 clustering algorithms, namely, static clustering algorithm for WMNs and dynamic clustering algorithm for WMNs. In these algorithms, we propose a new weight‐based cluster head and cluster member selection process for the formation of clusters. The weight of the nodes in WMN is computed considering the parameters include the bandwidth of the node, the degree of node connectivity, and node cooperation factor. Further, we also propose enhanced quality of service enabled routing protocol for WMNs considering the delay, bandwidth, hopcount, and expected transmission count are the routing metrics. The performance of the proposed clustering algorithms and routing protocol are analyzed, and results show high throughput, high packet delivery ratio, and low communication cost compared with the existing baseline mobility management algorithms and routing protocols.  相似文献   

19.
It is a critical issue to ensure that nodes and/or flows have fair access to the network bandwidth in wireless mesh networks (WMNs). However, current WMNs based on IEEE 802.11 exhibit severe unfairness. Several scheduling schemes have been proposed to ensure fairness in WMNs. Unfortunately, all of them implicitly trust nodes in the network, and thus are vulnerable to the misbehavior of nodes participating in scheduling. In this paper, we address the threats to fair scheduling in WMNs resulting from node misbehavior and present a generic verification framework to detect such misbehavior. Moreover, we develop two verification schemes based on this framework for distributed and centralized authentication environments, respectively. We validate our approach by extending an existing fair scheduling scheme and evaluating it through simulation. The results show that our approach improves misbehavior detection with light performance overhead.  相似文献   

20.
Wireless mesh networks (WMNs) have been proposed as an effective solution for ubiquitous last-mile broadband access. Three key factors that affect the usability of WMNs are high throughput, cost-effectiveness, and ease of deployability. In this paper, we propose DMesh, a WMN architecture that combines spatial separation from directional antennas with frequency separation from orthogonal channels to improve the throughput of WMNs. DMesh achieves this improvement without inhibiting cost-effectiveness and ease of deployability by utilizing practical directional antennas that are widely and cheaply available (e.g., patch and yagi) in contrast to costly and bulky smart beamforming directional antennas. Thus, the key challenge in DMesh is to exploit spatial separation from such practical directional antennas despite their lack of electronic steerability and interference nulling, as well as the presence of significant sidelobes and backlobes. In this paper, we study how such practical directional antennas can improve the throughput of a WMN. Central to our architecture is a distributed, directional channel assignment algorithm for mesh routers that effectively exploits the spatial and frequency separation opportunities in a DMesh network. Simulation results show that DMesh improves the throughput of WMNs by up to 231% and reduces packet delay drastically compared to a multiradio multichannel omni antenna network. A DMesh implementation in our 16-node 802.11b WMN testbed using commercially available practical directional antennas provides transmission control protocol throughput gains ranging from 31% to 57%  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号