首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The advances in the size, cost of deployment, and user‐friendly interface of wireless sensor devices have given rise to many wireless sensor network (WSN) applications. WSNs need to use protocols for transmitting data samples from event regions to sink through minimum cost links. Clustering is a commonly used method of data aggregation in which nodes are organized into groups to reduce energy consumption. Nonetheless, cluster head (CH) has to bear an additional load in clustering protocols to organize different activities within the cluster. Proper CH selection and load balancing using efficient routing protocol is therefore a critical aspect for WSN's long‐term operation. In this paper, a threshold‐sensitive energy‐efficient cluster‐based routing protocol based on flower pollination algorithm (FPA) is proposed to extend the network's stability period. Using FPA, multihop communication between CHs and base station is used to achieve optimal link costs for load balancing distant CHs and energy minimization. Analysis and simulation results show that the proposed algorithm significantly outperforms competitive clustering algorithms in terms of energy consumption, stability period, and system lifetime.  相似文献   

2.
3.
Ant colony optimization (ACO) and unequal clustering algorithms in wireless sensor networks (WSNs) prove their efficiency in protracting the network lifetime. However, the existing ACO and unequal clustering algorithms, respectively, do not consider jointly energy efficiency and reliability and focus only on some normal parameters to adjust the cluster radius, then neglecting the cluster head (CH) neighborhood information as it is wise to reduce the cluster radius when there are more neighbor CHs in order to balance the load and energy consumption. To resolve these problems, we propose a fault-tolerant distributed ACO-based routing (DACOR) protocol for mitigating the hot spot problem in fog-enabled WSN architecture. To improve the performance of the network, we propose a multiple fog nodes (FNs) and unequal clustering-based network model. The proposed model is energy efficient as it avoids repetitive clustering and affects CHs to FNs based on distance. Also, unlike the existing works which use either single FN/sink-based unequal clustering or multiple FNs/sinks to mitigate hot spot problem, we propose to distribute unequal clustering to multiple FNs (partitions). Additionally, we formulate a different rule to calculate the cluster radius based on significant parameters ensuring energy efficiency and balancing. To route data from source to destination, we devise a new probabilistic formula which considers not only energy efficiency but also reliability. The performance of the proposed DACOR protocol has been investigated under different scenarios through simulations. The results show that the proposed DACOR protocol outperforms the existing protocols in terms of various main metrics.  相似文献   

4.
Designing energy efficient communication protocols for wireless sensor networks (WSNs) to conserve the sensors' energy is one of the prime concerns. Clustering in WSNs significantly reduces the energy consumption in which the nodes are organized in clusters, each having a cluster head (CH). The CHs collect data from their cluster members and transmit it to the base station via a single or multihop communication. The main issue in such mechanism is how to associate the nodes to CHs and how to route the data of CHs so that the overall load on CHs are balanced. Since the sensor nodes operate autonomously, the methods designed for WSNs should be of distributed nature, i.e., each node should run it using its local information only. Considering these issues, we propose a distributed multiobjective‐based clustering method to assign a sensor node to appropriate CH so that the load is balanced. We also propose an energy‐efficient routing algorithm to balance the relay load among the CHs. In case any CH dies, we propose a recovery strategy for its cluster members. All our proposed methods are completely distributed in nature. Simulation results demonstrate the efficiency of the proposed algorithm in terms of energy consumption and hence prolonging the network lifetime. We compare the performance of the proposed algorithm with some existing algorithms in terms of number of alive nodes, network lifetime, energy efficiency, and energy population.  相似文献   

5.
Energy conservation and fault tolerance are two critical issues in the deployment of wireless sensor networks (WSNs). Many cluster‐based fault‐tolerant routing protocols have been proposed for energy conservation and network lifetime maximization in WSNs. However, these protocols suffer from high frequency of re‐clustering as well as extra energy consumption to tolerate failures and consider only some very normal parameters to form clusters without any verification of the energy sufficiency for data routing. Therefore, this paper proposes a cluster‐based fault‐tolerant routing protocol referred as CFTR. This protocol allows higher energy nodes to become Cluster Heads (CHs) and operate multiple rounds to diminish the frequency of re‐clustering. Additionally, for the sake to get better energy efficiency and balancing, we introduce a cost function that considers during cluster formation energy cost from sensor node to CH, energy cost from CH to sink, and another significant parameter, namely, number of cluster members in previous round. Further, the proposed CFTR takes care of nodes, which have no CH in their communication range. Also, it introduces a routing algorithm in which the decision of next hop CH selection is based on a cost function conceived to select routes with sufficient energy for data transfer and distribute uniformly the overall data‐relaying load among the CHs. As well, a low‐overhead algorithm to tolerate the sudden failure of CHs is proposed. We perform extensive simulations on CFTR and compare their results with those of two recent existing protocols to demonstrate its superiority in terms of different metrics.  相似文献   

6.
Energy conservation of the sensor nodes is the most important issue that has been studied extensively in the design of wireless sensor networks (WSNs). In many applications, the nodes closer to the sink are overburdened with huge traffic load as the data from the entire region are forwarded through them to reach the sink. As a result, their energy gets exhausted quickly and the network is partitioned. This is commonly known as hot spot problem. Moreover, sensor nodes are prone to failure due to several factors such as environmental hazards, battery exhaustion, hardware damage and so on. However, failure of cluster heads (CHs) in a two tire WSN is more perilous. Therefore, apart from energy efficiency, any clustering or routing algorithm has to cope with fault tolerance of CHs. In this paper, we address the hot spot problem and propose grid based clustering and routing algorithms, combinedly called GFTCRA (grid based fault tolerant clustering and routing algorithms) which takes care the failure of the CHs. The algorithms follow distributed approach. We also present a distributed run time management for all member sensor nodes of any cluster in case of failure of their CHs. The routing algorithm is also shown to tolerate the sudden failure of the CHs. The algorithms are tested through simulation with various scenarios of WSN and the simulation results show that the proposed method performs better than two other grid based algorithms in terms of network lifetime, energy consumption and number of dead sensor nodes.  相似文献   

7.

Wireless sensor network (WSN) becomes a hot research topic owing to its application in different fields. Minimizing the energy dissipation, maximizing the network lifetime, and security are considered as the major quality of service (QoS) factors in the design of WSN. Clustering is a commonly employed energy-efficient technique; however, it results in a hot spot issue. This paper develops a novel secure unequal clustering protocol with intrusion detection technique to achieve QoS parameters like energy, lifetime, and security. Initially, the proposed model uses adaptive neuro fuzzy based clustering technique to select the tentative cluster heads (TCHs) using three input parameters such as residual energy, distance to base station (BS), and distance to neighbors. Then, the TCHs compete for final CHs and the optimal CHs are selected using the deer hunting optimization (DHO) algorithm. The DHO based clustering technique derives a fitness function using residual energy, distance to BS, node degree, node centrality, and link quality. To further improve the performance of the proposed method, the cluster maintenance phase is utilized for load balancing. Finally, to achieve security in cluster based WSN, an effective intrusion detection system using a deep belief network is executed on the CHs to identify the presence of intruders in the network. An extensive set of experiments were performed to ensure the superior performance of the proposed method interms of energy efficiency, network lifetime, packet delivery ratio, average delay, and intrusion detection rate.

  相似文献   

8.
Clustering has been accepted as one of the most efficient techniques for conserving energy of wireless sensor networks (WSNs). However, in a two-tiered cluster based WSN, cluster heads (CHs) consume more energy due to extra overload for receiving data from their member sensor nodes, aggregating them and transmitting that data to the base station (BS). Therefore, proper selection of CHs and optimal formation of clusters play a crucial role to conserve the energy of sensor nodes for prolonging the lifetime of WSNs. In this paper, we propose an energy efficient CH selection and energy balanced cluster formation algorithms, which are based on novel chemical reaction optimization technique (nCRO), we jointly called these algorithms as novel CRO based energy efficient clustering algorithms (nCRO-ECA). These algorithms are developed with efficient schemes of molecular structure encoding and potential energy functions. For the energy efficiency, we consider various parameters such as intra-cluster distance, sink distance and residual energy of sensor nodes in the CH selection phase. In the cluster formation phase, we consider various distance and energy parameters. The algorithm is tested extensively on various scenarios of WSNs by varying number of sensor nodes and CHs. The results are compared with original CRO based algorithm, namely CRO-ECA and some existing algorithms to demonstrate the superiority of the proposed algorithm in terms of energy consumption, network lifetime, packets received by the BS and convergence rate.  相似文献   

9.
Reducing the energy consumption of sensor nodes and prolonging the life of the network is the central topic in the research of wireless sensor network (WSN) protocol. The low-energy adaptive clustering hierarchy (LEACH) is one of the hierarchical routing protocols designed for communication in WSNs. LEACH is clustering based protocol that utilizes randomized rotation of local cluster-heads to evenly distribute the energy load among the sensors in the network. But LEACH is based on the assumption that each sensor nodes contain equal amount of energy which is not valid in real scenarios. A developed routing protocol named as DL-LEACH is proposed. The DL-LEACH protocol cluster head election considers residual energy of nodes, distance from node to the base station and neighbor nodes, which makes cluster head election reasonable and node energy consumption balance. The simulation results of proposed protocols are compared for its network life time in MATLAB with LEACH protocol. The DL-LEACH is prolong the network life cycle by 75 % than LEACH.  相似文献   

10.

The network lifetime of Wireless Sensor Network (WSN) is one of the most challenging issues for any network protocol. The nodes in the network are densely deployed and are provided with limited power supply. The routing strategy is treated as an effective solution to improve the lifetime of the network. The cluster based routing techniques are used in the WSN to enhance the network lifespan and to minimize the energy consumption of the network. In this paper, an energy efficient heterogeneous clustering protocol for the enhancement of the network lifetime is proposed. The proposed protocol uses the sensor energy for the clustering process in a well-organized manner to maximize the lifetime of network. The MATLAB simulator is used for implementing the clustering model of proposed protocol and for measuring the effectiveness of the proposed technique the comparison is performed with the various existing approaches such as Stability Election Protocol, Distributed Energy Efficient Clustering and Adaptive Threshold Energy Efficient cross layer based Routing.

  相似文献   

11.

Energy conservation is the main issue in wireless sensor networks. Many existing clustering protocols have been proposed to balance the energy consumption and maximize the battery lifetime of sensor nodes. However, these protocols suffer from the excessive overhead due to repetitive clustering resulting in high-energy consumption. In this paper, we propose energy-aware cluster-based routing protocol (ECRP) in which not only the cluster head (CH) role rotates based on energy around all cluster members until the end of network functioning to avoid frequent re-clustering, but also it can adapt the network topology change. Further, ECRP introduces a multi-hop routing algorithm so that the energy consumption is minimized and balanced. As well, a fault-tolerant mechanism is proposed to cope up with the failure of CHs and relay nodes. We perform extensive simulations on the proposed protocol using different network scenarios. The simulation results demonstrate the superiority of ECRP compared with recent and relevant existing protocols in terms of main performance metrics.

  相似文献   

12.
Due to inherent issue of energy limitation in sensor nodes, the energy conservation is the primary concern for large‐scale wireless sensor networks. Cluster‐based routing has been found to be an effective mechanism to reduce the energy consumption of sensor nodes. In clustered wireless sensor networks, the network is divided into a set of clusters; each cluster has a coordinator, called cluster head (CH). Each node of a cluster transmits its collected information to its CH that in turn aggregates the received information and sends it to the base station directly or via other CHs. In multihop communication, the CHs closer to the base station are burdened with high relay load; as a result, their energy depletes much faster as compared with other CHs. This problem is termed as the hot spot problem. In this paper, a distributed fuzzy logic‐based unequal clustering approach and routing algorithm (DFCR) is proposed to solve this problem. Based on the cluster design, a multihop routing algorithm is also proposed, which is both energy efficient and energy balancing. The simulation results reinforce the efficiency of the proposed DFCR algorithm over the state‐of‐the‐art algorithms, ie, energy‐aware fuzzy approach to unequal clustering, energy‐aware distributed clustering, and energy‐aware routing algorithm, in terms of different performance parameters like energy efficiency and network lifetime.  相似文献   

13.
The single planar routing protocol has a slow convergence rate in the large-scale Wireless Sensor Network (WSN). Although the hierarchical routing protocol can effectively cope with large-scale application scenarios, how to elect a secure cluster head and balance the network load becomes an enormous challenge. In this paper, a Trust Management-based and ​Low Energy Adaptive Clustering Hierarchy protocol (LEACH-TM) is proposed. In LEACH-TM, by using the number of dynamic decision cluster head nodes, residual energy and density of neighbor nodes, the size of the cluster can be better constrained to improve energy efficiency, and avoid excessive energy consumption of a node. Simultaneously, the trust management scheme is introduced into LEACH-TM to defend against internal attacks. The simulation results show that, compared with LEACH-SWDN protocol and LEACH protocol, LEACH-TM outperforms in prolonging the network lifetime and balancing the energy consumption, and can effectively mitigate the influence of malicious nodes on cluster head selection, which can greatly guarantee the security of the overall network.  相似文献   

14.
Clustering and multi-hop routing algorithms substantially prolong the lifetime of wireless sensor networks (WSNs). However, they also result in the energy hole and network partition problems. In order to balance the load between multiple cluster heads, save the energy consumption of the inter-cluster routing, in this paper, we propose an energy-efficient routing algorithm based on Unequal Clustering Theory and Connected Graph Theory for WSN. The new algorithm optimizes and innovates in two aspects: cluster head election and clusters routing. In cluster head election, we take into consideration the vote-based measure and the transmission power of sensor nodes when to sectionalize these nodes into different unequal clusters. Then we introduce the connected graph theory for inter-cluster data communication in clusters routing. Eventually, a connected graph is constituted by the based station and all cluster heads. Simulation results show that, this new algorithm balances the energy consumption among sensor nodes, relieves the influence of energy-hole problem, improve the link quality, achieves a substantial improvement on reliability and efficiency of data transmission, and significantly prolongs the network lifetime.  相似文献   

15.
Routing protocol plays a role of great importance in the performance of wireless sensor networks (WSNs). A centralized balance clustering routing protocol based on location is proposed for WSN with random distribution in this paper. In order to keep clustering balanced through the whole lifetime of the network and adapt to the non-uniform distribution of sensor nodes, we design a systemic algorithm for clustering. First, the algorithm determines the cluster number according to condition of the network, and adjusts the hexagonal clustering results to balance the number of nodes of each cluster. Second, it selects cluster heads in each cluster base on the energy and distribution of nodes, and optimizes the clustering results to minimize energy consumption. Finally, it allocates suitable time slots for transmission to avoid collision. Simulation results demonstrate that the proposed protocol can balance the energy consumption and improve the network throughput and lifetime significantly.  相似文献   

16.
Clustering provides an effective way to prolong the lifetime of wireless sensor networks.One of the major issues of a clustering protocol is selecting an optimal group of sensor nodes as the cluster heads to divide the network.Another is the mode of inter-cluster communication.In this paper,an energy-balanced unequal clustering(EBUC)protocol is proposed and evaluated.By using the particle swarm optimization(PSO)algorithm,EBUC partitions all nodes into clusters of unequal size,in which the clusters closer to the base station have smaller size.The cluster heads of these clusters can preserve some more energy for the inter-cluster relay traffic and the 'hot-spots' problem can be avoided.For inter-cluster communication,EBUC adopts an energy-aware multihop routing to reduce the energy consumption of the cluster heads.Simulation results demonstrate that the protocol can efficiently decrease the dead speed of the nodes and prolong the network lifetime.  相似文献   

17.
One of important issues in wireless sensor networks is how to effectively use the limited node energy to prolong the lifetime of the networks. Clustering is a promising approach in wireless sensor networks, which can increase the network lifetime and scalability. However, in existing clustering algorithms, too heavy burden of cluster heads may lead to rapid death of the sensor nodes. The location of function nodes and the number of the neighbor nodes are also not carefully considered during clustering. In this paper, a multi-factor and distributed clustering routing protocol MFDCRP based on communication nodes is proposed by combining cluster-based routing protocol and multi-hop transmission. Communication nodes are introduced to relay the multi-hop transmission and elect cluster heads in order to ease the overload of cluster heads. The protocol optimizes the election of cluster nodes by combining various factors such as the residual energy of nodes, the distance between cluster heads and the base station, and the number of the neighbor nodes. The local optimal path construction algorithm for multi-hop transmission is also improved. Simulation results show that MFDCRP can effectively save the energy of sensor nodes, balance the network energy distribution, and greatly prolong the network lifetime, compared with the existing protocols.  相似文献   

18.
Designing an energy efficient and durable wireless sensor networks (WSNs) is a key challenge as it personifies potential and reactive functionalities in harsh antagonistic environment at which wired system deployment is completely infeasible. Majority of the clustering mechanisms contributed to the literature concentrated on augmenting network lifetime and energy stability. However, energy consumption incurred by cluster heads (CHs) are high and thereby results in minimized network lifetime and frequent CHs selection. In this paper, a modified whale-dragonfly optimization algorithm and self-adaptive cuckoo search-based clustering strategy (MWIDOA-SACS) is proposed for sustaining energy stability and augment network lifetime. In specific, MWIDOA-SACS is included for exploiting the fitness values that aids in determining two optimal nodes that are selected as optimal CH and cluster router (CR) nodes in the network. In MWIDOA, the search conduct of dragon flies is completely updated through whale optimization algorithm (WOA) for preventing load balancing at CHs. It minimized the overhead of CH by adopting CHs and CR for collecting information from cluster members and transmitting the aggregated data from CHs to the base station (BS). It included self-adaptive cuckoo search (SACS) for achieving sink mobility using radius, energy stability, received signal strength, and throughput for achieving optimal data transmission process after partitioning the network into unequal clusters. Simulation experiments of the proposed MWIDOA-SACS confirmed better performance in terms of total residual energy by 21.28% and network lifetime by 26.32%, compared to the competitive CH selection strategies.  相似文献   

19.
Wireless sensor network consists of sensor nodes with battery operated device. The key challenges in the wireless sensor network are energy consumption and routing optimization. This work presents the cluster based load balancing (CBLB) routing protocol. The proposed routing protocol is used to minimize the energy consumption and increase the routing performance. It avoids the routing robustness, delay and increases the delivery rate and network performance. In existing techniques, different routing protocols such as LEACH, HEED and MESTER were used to increase the network performance and to decrease the energy consumption. But these existing techniques did not satisfy the performance requirements of wireless sensor networks. Hence, there is a requirement to develop a technique that meets the QoS requirements and needs of wireless sensor network. The proposed CBLB routing protocol creates a cluster head in the decentralized network and the cluster head will be used to distribute the workload evenly to the cluster members for reducing the energy consumption in wireless sensor network. Experimental results analyze the performance of the proposed protocol with the different existing protocols. The proposed protocol achieves high throughput, delivery rate and reduces the energy consumption, delay and routing overhead.  相似文献   

20.
Wireless sensor networks (WSNs) need simple and effective approaches to reduce energy consumption because of limited energy. Clustering nodes is an effective approach to make WSNs energy-efficient. In this paper we propose a distributed multi-competitive clustering approach (DMCC) for WSNs. First, the nodes with high residual energy are selected to act as cluster head candidates (CHCs). Second, cluster heads (CHs) are selected from the CHCs based on a hybrid of competition. If the distances to the selected CHs are suitable, a CHC with more neighbor nodes and smaller average distance to its neighbor nodes is more likely to become a CH. If the number of CHs selected from the CHCs is insufficient, more CHs are selected from non-CHCs continually according to residual energy until the CHs number is suitable. DMCC makes the CHs number stable and distribute the CHs evenly. Simulation experiments were performed on to compare DMCC with some related clustering approaches. The experimental results suggest that DMCC balances the load among different clusters and reduces the energy consumption, which improves the network lifetime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号