首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Considering energy consumption, hardware requirements, and the need of high localization accuracy, we proposed a power efficient range-free localization algorithm for wireless sensor networks. In the proposed algorithm, anchor node communicates to unknown nodes only one time by which anchor nodes inform about their coordinates to unknown nodes. By calculating hop-size of anchor nodes at unknown nodes one complete communication between anchor node and unknown node is eliminated which drastically reduce the energy consumption of nodes. Further, unknown node refines estimated hop-size for better estimation of distance from the anchor nodes. Moreover, using average hop-size of anchor nodes, unknown node calculates distance from all anchor nodes. To reduce error propagation, involved in solving for location of unknown node, a new procedure is adopted. Further, unknown node upgrades its location by exploiting the obtained information in solving the system of equations. In mathematical analysis we prove that proposed algorithm has lesser propagation error than distance vector-hop (DV-Hop) and other considered improved DV-Hop algorithms. Simulation experiments show that our proposed algorithm has better localization performance, and is more computationally efficient than DV-Hop and other compared improved DV-Hop algorithms.  相似文献   

2.
在研究现有定位算法的基础上,针对基于接收信号强度指示(RSSI)定位模型中的参数易受环境影响等问题,提出了一种新型的粒子群优化(PSO)算法与后向传播(BP)神经网络相结合的算法.BP网络算法权值的修正依赖于非线性梯度值,易形成局部极值,同时学习次数较多,需先通过粒子群算法进行优化.为了提高定位精度,首先采用速度常量法滤波处理,然后通过改进的混合优化算法对BP神经网络初始权值和阈值进行优化,并分析算法的性能.试验中隐层节点个数采用试错法,从12到19变化,以确定合适数目.实验结果表明,与一般加权算法和传统BP算法相比,改进的混合优化算法可大幅改善测距误差对定位误差的影响,同时可使25 m内最小定位误差小于0.27 m.  相似文献   

3.
4.
针对基于跳数的距离矢量算法(DV-hop)存在的2个问题,引入逐级分区概念和加权计算,对多跳定位方式进行改进。改进的定位算法,通过对网络中的所有参考节点进行分级,按逐渐缩小本地范围的方式进行信标洪泛,极大地降低网络通信量;在校正值的计算和传播阶段,通过对不同参考节点加权并合理选择参考节点进行坐标计算,以减小最终的定位误差。通过理论计算和仿真表明,改进后的算法极大地降低了定位过程中的通信开销,提高了定位精确度,尤其在各向异性网络中,定位精确度较 DV-hop明显提高。  相似文献   

5.
一种降低定位误差的无线传感器网络节点定位改进算法   总被引:5,自引:0,他引:5  
本文针对无线传感器网络节点的定位精度问题,提出了一种采用误差修正的方法来降低累积距离误差和定位误差的传感器网络节点定位改进算法,给出了该算法的基本原理与实现方法.该算法在不增加原算法通信量及计算复杂度的基础上提高了定位精度.仿真结果显示,在同等条件下,本文提出的算法定位精度提高了5~10%.  相似文献   

6.
一种响应型无线传感器网络路由算法   总被引:1,自引:0,他引:1  
提出一种节能型无线传感器网络路由算法——TEENNEW.该算法利用能量模型确定了最优簇头数,在簇头选取阶段考虑了节点剩余能量;在数据传输阶段,该算法根据距离和能量建立簇头与基站之间的多跳通信路径.与传统的TEEN协议相比,TEENNEW算法延长了网络的生命周期,有效均衡了节点能耗.  相似文献   

7.
Wireless sensor networks (WSNs) are increasingly being used in remote environment monitoring, security surveillance, military applications, and health monitoring systems among many other applications. Designing efficient localization techniques have been a major obstacle towards the deployment of WSN for these applications. In this paper, we present a novel lightweight iterative positioning (LIP) algorithm for next generation of wireless sensor networks, where we propose to resolve the localization problem through the following two phases: (1) initial position estimation and (2) iterative refinement. In the initial position estimation phase, instead of flooding the network with beacon messages, we propose to limit the propagation of the messages by using a random time-to-live for the majority of the beacon nodes. In the second phase of the algorithm, the nodes select random waiting periods for correcting their position estimates based on the information received from neighbouring nodes. We propose the use of Weighted Moving Average when the nodes have received multiple position corrections from a neighbouring node in order to emphasize the corrections with a high confidence. In addition, in the refinement phase, the algorithm employs low duty-cycling for the nodes that have low confidence in their position estimates, with the goal of reducing their impact on localization of neighbouring nodes and preserving their energy. Our simulation results indicate that LIP is not only scalable, but it is also capable of providing localization accuracy comparable to the Robust Positioning Algorithm, while significantly reducing the number of messages exchanged, and achieving energy savings.  相似文献   

8.
This paper will address sensor selection problem for spectrum sensing in a cognitive radio network. The sensor’s limited energy is an important issue which has attracted more attention in recent years. An energy efficient cooperative spectrum sensing will hereby be proposed when multi-antenna sensors are used. Two decision-making techniques are utilized for the combination of antennas’ signals in each sensor: hard and soft decision-making. OR rule is used for hard decision-making technique while selection combining, equal gain combining and maximum ratio combining (MRC) are used for the soft one. In each combination scheme, the sensor selection is a problem by means of which both the energy consumption is minimized and the detection performance gets satisfied. The problem is solved based on the standard convex optimization method. Simulation results show the achievement of a significant energy saving compared to the networks using single-antenna sensors specifically in low signal to noise ratio state. Among all methods, MRC combining enjoys the least energy consumption, as well; it satisfies the desired detection performance.  相似文献   

9.
新的无线传感器网络覆盖控制算法   总被引:3,自引:0,他引:3  
首先,设计了节点自适应传感半径调整算法(AASR,adaptive adjustment of sensing radius),通过节点自适应选择最佳的覆盖范围,有效地进行节点覆盖控制,减少节点能量虚耗,提高覆盖效率。其次,从调整效果、能量消耗和覆盖冗余度3个方面对节点自适应传感半径调整算法进行了模拟实验和分析。仿真结果表明,AASR能够有效提高节点生存时间,减少能量消耗,提高覆盖率。  相似文献   

10.
提出了一种新的认知无线传感器网络中能耗有效的协作频谱感测算法。首先,为了降低分布式传感节点的能耗,假定传感节点的瞬时信噪比和平均信噪比已知,分析频谱感测节点的能耗与最优检测门限值之间的数学模型。然后,结合感测节点选择和判决门限设定理论,研究基于判决节点选择的有效协作频谱感测方案。理论分析和仿真结果表明,算法有效地降低了认知传感器网络的节点总能耗,提高了能耗效率。  相似文献   

11.
为了实现较好的监测质量,无线传感器网络往往全覆盖监测区域.然而,由于单个节点的带电量有限,全覆盖的无线传感器网络并不能持续工作较长时间.文中提出了一种监测应用的动态部分覆盖算法.通过算法仿真,得出网络的生命时间可以提高到无穷大,而侵入物从开始移动到被任意节点监测出的时间仅为算法周期的三分之二.  相似文献   

12.
无线传感器网络路由中的能量预测及算法实现   总被引:3,自引:0,他引:3  
基于无线传感器网络中路由协议高效合理利用能量的要求,提出一种基于剩余能量预测的地理位置路由(EPGR,energy prediction and geographical routing)算法。算法通过建立传感器网络节点运作模型,及相邻节点剩余能量预测机制,优化路由选择。仿真和分析表明,EPGR算法能够有效地优化数据传输路径,均衡传感器网络节点的能量消耗,延长网络寿命。  相似文献   

13.
提出了无线传感器网络中一种基于接收信号指示强度的改进差分修正算法,与传统的差分修正算法相比,在该算法中,通过各个信标节点分别作为差分参考节点进行定位,避免了单个差分参考节点对未知节点定位决定权过大。同时,提出加权因子的概念,体现了各差分参考点对定位效果的决定权。实验结果表明,改进的差分修正算法的定位精度和稳定性有明显提高。  相似文献   

14.
《现代电子技术》2017,(5):14-18
无线传感网络中低功耗自适应聚类分簇(LEACH)路由算法等概率选取簇首节点,容易导致整个网络节点能量损耗出现极端化,减少网络生存时间。为此,提出一种针对簇首节点选取和分簇的改进LEACH算法。该算法把整个网络区域分为四个扇形区域,在每个区域内独立进行分簇路由;然后基站根据节点剩余能量和与基站的距离进行簇首节点选择,节点根据簇首节点和基站接收信号强度选择路由方式,以均衡网络能量消耗。仿真结果表明,改进LEACH算法的网络寿命是原有LEACH算法的150%,数据吞吐量提升了3倍。  相似文献   

15.
节点的定位是无线传感器网络中的一种重要技术。提出了一种新的无线传感器网络定位算法——基于二次质心算法的定位算法,与以往的基于三边测量的加权质心方法不同,该算法改进了对未知节点位置的估算方法,一定程度上避免了因多次估算质心而产生的累积误差,提高了定位精度。仿真表明,该算法的定位精度较之前的三边测量方法提高了约19%。  相似文献   

16.
In hostile environments, localization often suffers from malicious attacks that may distort transmit power and degrade positioning accuracy significantly for wireless sensor network. A robust semidefinite relaxation secure localiza-tion algorithm RSRSL was proposed to improve the location accuracy against malicious attacks. On the assumption of unknown transmit power, which is undoubtedly approximate to the fact of WSN, a novel secure location probability model was introduced for single-target and multi-target sensor networks, respectively. Taking the computational complexity of RSRSL into account, the nonlinear and non-convex optimization problem was simplified into a semidefinite programming problem. According to the results from both simulations and field experiments, it is clearly demonstrated that the proposed RSRSL has better performance on location accuracy, in contrast to the conventional localization algorithms.  相似文献   

17.
传统无线传感网一般由大量密集的传感器节点构成,存在节点计算能力、能源和带宽都非常有限的缺点,为了有效节能、延长网络寿命,介绍了基于聚类的K均值算法.该算法通过生成的簇头节点散播到网络的各个区域中,减少了每个区域内通信的能耗和可能会出现的一般节点过早死亡的情况,从而避免了网络对该区城提早失去监控.实验证明,该算法对各节点...  相似文献   

18.
基于几何学的无线传感器网络定位算法   总被引:1,自引:0,他引:1  
刘影 《光电子.激光》2010,(10):1435-1438
提出一种基于几何学的无线传感器网络(WSN)定位算法。把网络区域中的节点分为锚节点和未知节点,假设在定位空间中有n个锚节点,由于受到几何学的限制,实际可行的锚节点序列是有限的,因此利用一种几何方法判断锚节点间的位置关系,从而选取最优的锚节点序列,能够更精确地确定未知节点的位置,并且分析了待定位节点的邻居锚节点数量对定位精度的影响。仿真结果表明,与已有的APS(Ad-Hoc positioning system)定位算法相比,该算法可有效地降低平均定位误差和提高定位覆盖度。  相似文献   

19.
In energy‐constrained military wireless sensor networks, minimizing the bit error rate (BER) with little compromise on network lifetime is one of the most challenging issues. This paper presents a new relay selection based on fuzzy logic (RSFL) scheme which provides balance between these parameters. The proposed scheme considers node's residual energy and path loss of the relay‐destination link as the input parameters for the selection of the relay node. The relay node selection by fuzzy logic is based on prioritizing higher residual energy and minimum path loss. To evaluate the performance on wireless sensor network, we compare the proposed scheme with the three existing relay selection strategies, ie, random, maximum residual energy based relay selection (MaxRes), and minimum energy consumption based relay selection (MinEnCon). The simulation results of the proposed scheme in terms of network lifetime, BER, Network Survivability Index (NSI), and average energy of network nodes have been presented and compared with different relay selection schemes. The simulation results show that the proposed RSFL scheme has the lowest BER, moderate network lifetime, average energy, and NSI.  相似文献   

20.
Location information of sensor nodes is of vital importance for most applications in wireless sensor networks (WSNs). This paper proposes a new range-free localisation algorithm using support vector machine (SVM) and polar coordinate system (PCS), LSVM-PCS. In LSVM-PCS, two sets of classes are first constructed based on sensor nodes’ polar coordinates. Using the boundaries of the defined classes, the operation region of WSN field is partitioned into a finite number of polar grids. Each sensor node can be localised into one of the polar grids by executing two localisation algorithms that are developed on the basis of SVM classification. The centre of the resident polar grid is then estimated as the location of the sensor node. In addition, a two-hop mass-spring optimisation (THMSO) is also proposed to further improve the localisation accuracy of LSVM-PCS. In THMSO, both neighbourhood information and non-neighbourhood information are used to refine the sensor node location. The results obtained verify that the proposed algorithm provides a significant improvement over existing localisation methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号