首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对网格正交频分复用(LOFDM,lattice OFDM)系统具有较传统OFDM系统更高峰均功率比(PAPR,peak-to-average power ratio)的问题,在将传统非线性压扩变换应用于LOFDM系统的同时研究并分析了一种新的基于原信号统计分布特性的连续可导非线性压扩算法。该算法从原信号的渐进高斯分布特性出发并对原信号的幅度分布函数进行截断逼近,在保持平均功率不变的条件下,将压扩后的信号限制在与原信号分布特性一致的特定范围内,使压扩后的信号在保持其原有分布特性的同时,能更大程度改善系统PAPR和误比特(BER,biterror ratio)性能。理论分析和仿真实验表明,所提出的算法性能要显著优于传统非线性压扩算法。  相似文献   

2.
In this paper, we propose and evaluate a novel nonlinear companding transform (NCT) scheme for peak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) systems. The key idea of the proposed scheme is to transform the original Gaussian-distributed OFDM signals into a specific statistics form, whose target probability density function is defined by a piecewise function with an inflexion point. By properly choosing the transform parameters, this scheme can enable more flexibility and freedom in the companding form so that a favorable tradeoff between PAPR reduction and bit error rate (BER) performance can be achieved. Moreover, compared to existing NCT techniques, this scheme dramatically decreases the impact of companding distortion on the BER performance to reach a given PAPR level. The analytical expressions regarding the achievable transform gain in PAPR, complementary cumulative density function, attenuation coefficient, and selection criteria of transform parameters are derived. Simulation results justify the significance and accuracy of the analytical expressions presented.  相似文献   

3.
In this paper, we provide the design criteria of the nonlinear companding transforms for reduction in peak-to-average power ratio (PAPR) of multi-carrier modulation (MCM) signals, which can enable the original MCM signals to be transformed into the desirable distribution. As examples, some novel nonlinear companding transforms have been proposed to transform the amplitude or power of the original MCM signals into uniform distribution, which can effectively reduce the PAPR for different modulation formats and subcarrier sizes without any complexity increase and bandwidth expansion. It has been shown by computer simulations that the proposed schemes can significantly improve the performance of MCM systems including bit-error-rate and PAPR reduction.  相似文献   

4.
Exponential companding technique for PAPR reduction in OFDM systems   总被引:7,自引:0,他引:7  
In this paper, a new nonlinear companding technique, called "exponential companding", is proposed to reduce the high Peak-to-Average Power Ratio (PAPR) of Orthogonal Frequency Division Multiplexing (OFDM) signals. Unlike the /spl mu/-law companding scheme, which enlarges only small signals so that increases the average power, the schemes based on exponential companding technique adjust both large and small signals and can keep the average power at the same level. By transforming the original OFDM signals into uniformly distributed signals (with a specific degree), the exponential companding schemes can effectively reduce PAPR for different modulation formats and sub-carrier sizes. Moreover, many PAPR reduction schemes, such as /spl mu/-law companding scheme, cause spectrum side-lobes generation, but the exponential companding schemes cause less spectrum side-lobes. Computer simulations, which consider a baseband OFDM system with Additive White Gaussian Noise (AWGN) channels and a Solid State Power Amplifier (SSPA), show that the proposed exponential companding schemes can offer better PAPR reduction, Bit Error Rate (BER), and phase error performance than the /spl mu/-law companding scheme.  相似文献   

5.
Piecewise companding transform is a flexible and efficient way to solve the high peak-to-average power ratio (PAPR) problem for orthogonal frequency division multiplexing (OFDM) systems. A novel threshold-based piecewise companding transform is proposed in this paper. Based on the statistical characteristics of amplitudes, OFDM signals are classified into three groups (i.e., small, average and large signals). Different from conventional approaches, two dedicated designed thresholds are set to amplify the small signals and compress the large signals, respectively. Simulation results verify the improvement in PAPR reduction of the proposed scheme. Moreover, a lower bit error rate (BER) performance loss can be obtained by introducing the iterative detection with a moderate increase in complexity.  相似文献   

6.
The orthogonal frequency‐division multiplexing (OFDM) is a multicarrier modulation system that is used to transmit the large volume of data to the receiver. Reducing the peak‐to‐average power ratio (PAPR) in OFDM system is one of the demanding and crucial task in recent days. For this reason, various precoding and companding mechanisms are developed in the traditional works, but it remains with the limitations of increased complexity, reduced performance, and nonlinear distortion. The reduction of PAPR is achieved by minimizing the companding distortion with the enhancement of the bit error rate (BER) performance significantly. Then, in order to avoid clipping in OFDM, a multilateral piecewise exponential companding transform (MPECT) method has been utilized rather than using piecewise exponential companding transform (PEC) where PAPR is getting reduced. The OFDM is very sensitive to synchronizing error. To overcome this sensitivity, employ the Zadoff‐Chu sequence to carrier frequency offsets. Zadoff‐Chu matrix transform (ZCMT) has numerous merits among the other ODFM systems such as the improvement in the performance of the channels that are fading away and provides an ideal periodic autocorrelation and a constant magnitude periodic cross correlation. Both of these techniques provide improvement in the ODFM systems. To get more efficiency, this paper aims to develop a hybrid technique by integrating the ZCMT and MPECT techniques for reducing the PAPR in OFDM systems. Further, convolutional encoding is applied for better BER and PAPR. The simulation results of the proposed ZCMT‐MPECT technique are evaluated and compared with the conventional OFDM and other precoding methods.  相似文献   

7.
High peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems seriously impacts power efficiency in radio frequency section due to the nonlinearity of high-power amplifiers. In this article, an improved gamma correction companding (IGCC) is proposed for PAPR reduction and investigated under multipath fading channels. It is shown that the proposed IGCC provides a significant PAPR reduction while improving power spectral levels and error performances when compared with the previous gamma correction companding. IGCC outperforms existing companding methods when a nonlinear solid-state power amplifier (SSPA) is considered. Additionally, with the introduction of \(\alpha , \beta , \gamma \), and \(\varDelta \) parameters, the improved companding can offer more flexibility in the PAPR reduction and therefore achieves a better trade-off among the PAPR gain, bit error rate (BER), and power spectral density (PSD) performance. Moreover, IGCC improves the BER and PSD performances by minimizing the nonlinear companding distortion. Further, IGCC improves signal-to-noise ratio (SNR) degradation (\(\varDelta _{\mathrm{SNR}}\)) and total degradation performances by 12.2 and 12.8 dB, respectively, considering an SSPA with input power back-off of 3.0 dB. Computer simulation reveals that the performances of IGCC are independent of the modulation schemes and works with arbitrary number of subcarriers (N), while it does not increase computational complexity when compared with the existing companding schemes used for PAPR reduction in OFDM systems.  相似文献   

8.
低复杂度OFDM信号峰均功率比压缩技术   总被引:9,自引:2,他引:7       下载免费PDF全文
黄晓  陆建华  郑君里 《电子学报》2003,31(3):398-401
本文提出了一种用于减小OFDM信号峰均功率比(Peak-to-Average Power Ratio,PAPR)的压缩扩张变换技术.该技术能够以相对较低的计算复杂度大大降低OFDM信号的PAPR.作为应用实例,本文分析了线性压缩扩张、非线性对称压缩扩张和非线性准对称压缩扩张的PAPR改善幅度、计算复杂度、及其用于OFDM系统时对系统误比特率(BER)的改善等方面的性能.实验仿真表明,与采用传统的限幅滤波方法相比,本文提出的技术可以获得较明显的性能增益.  相似文献   

9.
杨超  王勇  葛建华 《通信学报》2015,36(4):164-169
针对现有基于压扩变换处理的信号峰平比抑制方法性能单一且参数固定等缺陷,提出一种联合迭代滤波与自适应压扩参数优化的OFDM信号峰平比抑制方案。该方案能够同时对信号的峰平比PAPR和接收端误码率BER性能进行联合优化,并在迭代过程中有效消除因信号幅度畸变所引起的带外频谱再生;所提信号压扩及解压扩函数形式简单,计算复杂度较小;推导并给出了该方案可获得的PAPR抑制增益和BER理论性能界。仿真结果表明,该方案可同时获得较好的信号PAPR抑制、误码率以及带外功率谱性能,并在迭代过程中对压扩参数进行自适应调整,能够有效提高算法的适用灵活性。  相似文献   

10.
Companding transform is an efficient and simple method to reduce the Peak-to-Average Power Ratio (PAPR) for Multi-Carrier Modulation (MCM) systems. But if the MCM signal is only simply operated by inverse companding transform at the receiver, the resultant spectrum may exhibit severe in-band and out-of-band radiation of the distortion components, and considerable peak regrowth by excessive channel noises etc. In order to prevent these problems from occurring, in this paper, two novel nonlinear companding schemes with a iterative receiver are proposed to reduce the PAPR. By transforming the amplitude or power of the original MCM signals into uniform distributed signals, the novel schemes can effectively reduce PAPR for different modulation formats and sub-carrier sizes. Despite moderate complexity increasing at the receiver, but it is especially suitable to be combined with iterative channel estimation. Computer simulation results show that the proposed schemes can offer good system performances without any bandwidth expansion.  相似文献   

11.
基于压扩变换的OFDM信号PAPR抑制方法具有实现简单、抑制效果明显的优点。对现有压扩变换PAPR抑制方法进行了分析和研究,并在此基础上,提出了一种基于均匀分布的压扩变换方法。该方法能够将任何分布的调制信号均变为均匀分布。仿真结果表明,与现有方法相比,该方法抑制PAPR的效果较为明显,且易于实现,具有较好的实用性。  相似文献   

12.
A major drawback of orthogonal frequency-division multiplexing (OFDM) signals is their high peak-to-average power ratio (PAPR), which causes serious degradation in performance when a nonlinear power amplifier (PA) is used. Companding transform (CT) is a well-known method to reduce PAPR without restrictions on system parameters such as number of subcarriers, frame format and constellation type. Recently, a linear nonsymmetrical companding transform (LNST) that has better performance than logarithmic-based transforms such as $mu$-law companding was proposed. In this paper, a new linear companding transform (LCT) with more design flexibility than LNST is proposed. Computer simulations show that the proposed transform has a better PAPR reduction and bit error rate (BER) performance than LNST with better power spectral density (PSD).   相似文献   

13.
A new nonlinear companding transform scheme is proposed to reduce the peak-to-average ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) signals. By exploiting statistical distribution of transmitted OFDM signals, the proposed scheme effectively reduces the PAPR by compressing the peak signals and expanding the small signals, while maintaining the average power unchanged by properly choosing transform parameters. The fact that the proposed companding scheme is described by a single-valued function allows to be transformed before amplification and to be restored the signals at the receiver. The proposed scheme can be applicable with any modulation format and subcarriers. Our simulations results confirm that the suggested scheme exhibits a good ability to reduce PAPR and a good BER performance with a solid state power amplifier (SSPA) in an additive white Gaussian noise (AWGN) channel.  相似文献   

14.
江涛 《电子学报》2005,33(7):1218-1221
本文提出了一种新的降低OFDM信号峰均功率比的压缩扩张技术.文中通过与传统压缩扩张技术的对比,详细介绍了新压缩扩张技术的方法和计算复杂度、并从统计角度分析了对峰均功率比及其用于OFDM系统时对系统误比特率的改善等方面的性能.数值仿真说明,与传统压缩扩张技术相比较,新压缩扩张技术不仅具有更低的计算复杂度,而且可以获得更为高效的性能增益.  相似文献   

15.
一种采用压扩算法来降低OFDM信号PAPR的新方法   总被引:1,自引:1,他引:0  
魏克军  益晓新 《电视技术》2003,(2):14-15,18
OFDM技术具有很高峰平功率比(PAPR),这是其实用化的一个瓶颈。针对这一问题,构造了一个新的压扩函数来降低OFDM信号的峰平功率比,通过计算机仿真表明,它不但可以大幅度降低OFDM信号的PAPR,而且,还可以通过适当的选择压扩系数得到一定的系统增益。  相似文献   

16.

To reduce the high peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signal, a novel nonlinear companding transform (CT) scheme is proposed in this paper. This scheme can reallocate both the amplitude/power as well as statistical distribution of the companded signal more reasonably and flexibly than existing CT methods with low computational complexity. By choosing an appropriate companding parameter, it can provide more effective PAPR reduction but at the price of a minimal amount of bit-error-rate (BER) performance degradation caused by the companding distortion. The closed-form expressions including the achievable PAPR gain, signal attenuation factor, and corresponding selection criteria for the companding parameter were derived. Computer simulations demonstrate that the scheme significantly improves the overall performances of OFDM system in terms of PAPR, BER and bandwidth efficiency under the multipath fading channel or with the high power amplifier.

  相似文献   

17.
Non-orthogonal multiple access (NOMA) is a great contender for future cellular modulation due to its desirable properties like massive connectivity, high data rate transmission, and high spectral efficiency. However, its peak-to-average power ratio (PAPR) is significant, which becomes a significant disadvantage for the efficient operability of the NOMA waveform compared to current techniques. Several PAPR reduction algorithms like selective mapping (SLM), partial transmission sequence (PTS), and companding techniques have been proposed to lower the PAPR of multicarrier waveforms (MCWs). PTS reduces the PAPR but has high complexity. On the other hand, SLM has a less complex framework, but its PAPR performance is not as efficient as PTS. Companding methods reduce the PAPR by compressing the signals at the transmitter, which unfortunately reduces the dynamic range of the signal. In this work, we propose a hybrid algorithm (SLM + PTS) with a companding method for the first time for the NOMA waveform, which efficiently reduces the PAPR with low computational complexity. Furthermore, we compare the performances of a host of candidate algorithms like SLM, PTS, hybrid (SLM + PTS), hybrid + A law (SLM–PTS–A law), and hybrid + Mu law (SLM–PTS–Mu law). The results of the experiments show that the hybrid + Mu law did a better job than the existing PAPR reduction algorithms.  相似文献   

18.
The 3rd generation partnership project long term evolution standard uses orthogonal frequency division multiplexing access in downlink and single carrier frequency division multiple access (SCFDMA) scheme for the uplink transmissions, which utilizes single carrier modulation and frequency domain equalization. In this paper, we proposed a Raised Cosine-like companding scheme to reduce the peak-to-average power ratio (PAPR) of SCFDMA signals. The proposed scheme can transform the original SCFDMA signals into Raised Cosine-like-distributed. Moreover, this scheme can compress the large signals, while maintaining the average power constant. Computer simulation results show that the proposed companding scheme can offer better PAPR reduction by properly choosing the parameters.  相似文献   

19.
Orthogonal frequency division multiplexing (OFDM) is perhaps the most spectrally efficient method discovered so far for communication systems and yet have an excellent immunity against multipath fading and inter-symbol interference. One of the major drawbacks of OFDM systems is their high peak-to-average power ratio (PAPR), which degrades system performance when nonlinear high power amplifiers (HPA) are employed. In this article, a new companding technique based on gamma correction (GC) function is proposed and analyzed. Through extensive computer simulations, it is shown that the proposed technique outperforms the previously suggested A-law and μ-law companding methods for PAPR reduction. A thorough investigation of GCC companding is presented in terms of computational complexity (CC), complementary cumulative distribution function (CCDF), power spectral density (PSD), and bit-error-rate (BER). It is also shown that the proposed method is independent of modulation schemes and can be applied to any number of subcarriers.  相似文献   

20.
In this paper, an adaptive-network-based fuzzy inference system (ANFIS) based scheme is analyzed and proposed for reducing the peak-to-average power ratio (PAPR) in multicarrier signals under additive white Gaussian noise and multipath fading (Raleigh) channel environment. This scheme involves training of ANFIS structure in time domain using Orthogonal Frequency Division Multiplexing signals with low PAPR, such as those obtained by approximate gradient project–null subcarrier switching (AGP–NCS) method. Once the ANFIS module is trained, the proposed scheme approximately offers similar reduction in PAPR as compared to AGP–NCS method, with significantly less convergence time and computational complexity. he results show that proposed approach is not only less complex but also maintains the data rate and bit error rate performance compared with other conventional schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号