首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E. Elgendy  J. Schmidt  A. Khalil  M. Fatouh 《Energy》2010,35(12):4941-4948
A gas engine heat pump (GEHP) represents one of the most practicable systems which improve the overall energy utilization efficiency and reduce the operating cost for heating and cooling applications. The present work aimed at evaluating the performance of a GEHP for air-conditioning and hot water supply. In order to achieve this objective, a test facility was developed and experiments were performed over a wide range of engine speed (1200 rpm–1750 rpm), ambient air temperature (24.1 °C–34.8 °C), evaporator water flow rate (1.99 m3/h–3.6 m3/h) and evaporator water inlet temperature (12.2 °C–23 °C). Performance characteristics of the GEHP were characterized by water outlet temperatures, cooling capacity, heating capacity and primary energy ratio (PER). The results showed that the effect of evaporator water inlet temperature on the system performance is more significant than the effects of ambient air temperature and evaporator water flow rate. PER of the considered system at evaporator water inlet temperature of 23 °C is higher than that one at evaporator water inlet temperature of 12.2 °C by about 22%. PER of the system decreases by 16% when engine speed changes from 1200 rpm to 1750 rpm.  相似文献   

2.
Nowadays a sustainable development for more efficient use of energy and protection of the environment is of increasing importance. Gas engine heat pumps represent one of the most practicable solutions which offer high energy efficiency and environmentally friendly for heating and cooling applications. In this paper, the performance characteristics of gas engine driven heat pump used in water cooling were investigated experimentally without engine heat recovery. The effects of several important factors (evaporator water inlet temperature, evaporator water volume flow rate, ambient air temperature, and engine speed) on the performance of gas engine driven heat pump were studied in a wide range of operating conditions. The results showed that primary energy ratio of the system increased by 22.5% as evaporator water inlet temperature increased from 13 °C to 24 °C. On the other hand, varying of engine speed from 1300 rpm to 1750 rpm led to decrease in system primary energy ratio by 13%. Maximum primary energy ratio has been estimated with a value of two over a wide range of operating conditions.  相似文献   

3.
M. Fatouh  E. Elgendy   《Energy》2011,36(5):2788-2795
The present work aims at evaluating the performance characteristics of a vapor compression heat pump (VCHP) for simultaneous space cooling (summer air conditioning) and hot water supply. In order to achieve this objective, a test facility was developed and experiments were performed over a wide range of evaporator water inlet temperature (14:26 °C) and condenser water inlet temperature (22:34 °C). R134a was used as a primary working fluid whereas water was adopted as a secondary heat transfer fluid at both heat source (evaporator) and heat sink (condenser) of the heat pump. Performance characteristics of the considered heat pump were characterized by outlet water temperatures, water side capacities and coefficient of performance (COP) for various operating modes namely: cooling, heating and simultaneous cooling and heating. Results showed that COP increases with the evaporator water inlet temperature while decreases as the condenser water inlet temperature increases. However, the evaporator water inlet temperature has more effect on the performance characteristics of the heat pump than that of condenser water inlet temperature. Actual COP of cooling mode between 1.9 to 3.1 and that of heating mode from 2.9 to 3.3 were obtained. Actual simultaneous COP between 3.7 and 4.9 was achieved.  相似文献   

4.
《Energy Conversion and Management》2005,46(11-12):1714-1730
In this study, the heating performance of a gas engine driven air to water heat pump was analyzed using a steady state model. The thermodynamic model of a natural gas engine is identified by the experimental data and the compressor model is created by several empirical equations. The heat exchanger models are developed by the theory of heat balance. The system model is validated by comparing the experimental and simulation data, which shows good agreement. To understand the heating characteristic in detail, the performance of the system is analyzed in a wide range of operating conditions, and especially the effect of engine waste heat on the heating performance is discussed. The results show that engine waste heat can provide about 1/3 of the total heating capacity in this gas engine driven air to water heat pump. The performance of the engine, heat pump and integral system are analyzed under variations of engine speed and ambient temperature. It shows that engine speed has remarkable effects on both the engine and heat pump, but ambient temperature has little influence on the engine’s performance. The system and component performances in variable speed operating conditions is also discussed at the end of the paper.  相似文献   

5.
研究了燃气热泵(GHP)系统在过渡季节制备生活热水的性能特性,分析了发动机余热回收对GHP系统性能的影响。在不同环境温度(15~24℃)和进水温度(37.7~47.8℃)下,考察回收与不回收发动机余热模式对生活热水制热量■、耗气功率(Pgas)及一次能源利用率(rPER)的影响规律。结果表明,随着环境温度的升高,Pgas减小,而■和rPE R呈现递增的趋势;随着进水温度的升高,Pgas增大,而■和rPER呈现递减的趋势。其中环境温度20~24℃与进水温度37.7~47.8℃为Qh的不敏感区间,在环境温度为24℃和进水温度为37.7℃条件下,rPER高达2.004。GHP系统的余热回收量分别占总制热量和发动机总余热的25.00%~30.16%和62.17%~71.56%,系统的余热利用率高。  相似文献   

6.
Gas engine heat pumps play an important role in energy saving and environment protection in both cooling and heating applications. In the present work, a thermal modelling of the gas engine driven heat pump in cooling mode is performed and system main parameters such as cooling capacity, gas engine energy consumption and primary energy ratio (PER) are computed. The modelling of the gas engine heat pump includes modelling of the scroll compressor, the plate evaporator and the gas engine. Discharged refrigerant mass flow rate and compressor power represent the main output parameters of the compressor semi-empirical model. Using the discharged refrigerant mass flow rates along with the available evaporation heat transfer correlations, the system cooling capacity is deduced. Based on the present experimental data, a correlation of gas engine energy consumption as function of compressor power, engine speed and ambient air temperature is obtained. Furthermore, the gas engine heat pump model is validated by comparing experimental and simulation data. The model error percentages to predict the cooling capacity, the gas engine energy consumption and the PER are 7%, 5%, 6% respectively.  相似文献   

7.
The aim of this paper is to simulate the performance of an air source heat pump water heater using carbon dioxide (CO2) as a working fluid. The heat pump water heating system consists of a compressor, a gas cooler, an expansion device and an evaporator. The computer simulation model has been developed by using the heat transfer data and the thermodynamic properties of CO2. The effects on the heat pump performance by the operating parameters such as the compressor rotational speed, the inlet water temperature at the gas cooler, the inlet air temperature at the evaporator and the mass flow rate ratio of water to refrigerant were presented. For rated capacities of a 4 kW compressor with a 10 kW gas cooler and a 6 kW evaporator, the coefficient of performance is found to be between 2.0 and 3.0. The mass flow rate ratio of water and CO2 between 1.2 and 2.2 is the most suitable value for generating hot water temperature above 60°C at 15–25°C ambient air temperature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
针对热源塔换热能力及热源塔联立热泵主机制热情况分别进行试验研究,并与风冷热泵的制热变化性能进行比较分析。结果表明,控制热源塔进口气液温差恒定的情况下,塔从空气中吸收的热量随环境温度的降低而增加,溶液中溶质的挥发对热源塔吸热量有重要影响;热源塔进口气液温差随环境自然变化的情况下,环境温度与蒸发温度的温差随环境温度的降低而减小,热源塔从空气中吸收的热量也随之减少。在低温工况下,虽然空气含湿量较少,但热源塔热泵系统相比于其他空气作为热源的热泵系统,在潜热换热方面有较大优势。  相似文献   

9.
The objective of this paper is to experimentally determine the efficiency and viability of the performance of an advanced trigeneration system that consists of a micro gas turbine in which the exhaust gases heat hot thermal oil to produce cooling with an air cooled absorption chiller and hot water for heating and DHW. The micro gas turbine with a net power of 28 kW produces around 60 kW of heat to drive an ammonia/water air-cooled absorption chiller with a rated capacity of 17 kW. The trigeneration system was tested in different operating conditions by varying the output power of the micro gas turbine, the ambient temperature for the absorption unit, the chilled water outlet temperature and the thermal oil inlet temperature. The modelling performance of the trigeneration system and the electrical modelling of the micro gas turbine are presented and compared with experimental results. Finally, the primary energy saving and the economic analysis show the advantages and drawbacks of this trigeneration configuration.  相似文献   

10.
To increase the driving range of electric vehicles in cold climate, air conditioning heat pump (ACHP) system is supposed to be the most effective solution. Working near 0°C with high humidity, the microchannel outdoor heat exchanger (OHX) in system would experience badly frosting process, like traditional residential heat pump system. It would lead to a significant reduction of system performance without defrosting in time. In this article, experimental investigation has been implemented on the frosting process of ACHP system of electric vehicles which is with a microchannel OHX. The phenomenon of frosting distribution was observed, the frosted part on surface shows uneven with various flows paths. The typical frosting characteristics of an outdoor microchannel heat exchanger were also obtained. In a self-designed three-heat exchanger ACHP system, the inlet and outlet refrigerant temperature of OHX as well as the outlet air temperature of system decrease with increasing frosting coverage rate. The frosting phenomenon was analyzed with variation of ambient temperature and humidity. System influence by frosting was also studied with under different ambient conditions. When OHX begins to frost, the heating capacity reduction of system under different ambient conditions were both increased but the differences in the coefficient of performance (COP) variations under different ambient conditions were small as frosting progressed.  相似文献   

11.
PERFORMANCE OF A HEAT PUMP USING DIRECT EXPANSION SOLAR COLLECTORS   总被引:1,自引:0,他引:1  
Theoretical and experimental studies were made on the thermal performance of a heat pump that used a bare flat-plate collector as the evaporator. The analysis used empirical equations to express the electric power consumption of the compressor and coefficient of performance (COP), as functions of temperature of evaporation at the evaporator and that of the heat transfer medium (water) at the inlet of the condenser. The experimental heat pump had a compressor with a rated capacity of 350 W and collectors with the total area of 3.24 m2. Around noon in winter the evaporator temperature was found to be about 17°C higher than the ambient air temperature of 8°C, and a COP of about 5.3 was obtained when the water temperature at the condenser inlet was 40°C. These measured evaporation temperatures and COPs were in good agreement with those predicted by the analysis. According to the analysis, the total area of the collectors in the experiment was appropriate for the heat pump system. Also, the 1-mm thickness of the collector's copper plate used in the experiment could be 0.5 mm with little reduction of COP. The pitch of the tube soldered to the copper plate for the refrigerant flow was 100 mm in the experiment, but the COP would only be reduced by about 4% if the pitch were changed to 190 mm.  相似文献   

12.
The energy and exergy flow for a space heating systems of a typical residential building of natural ventilation system with different heat generation plants have been modeled and compared. The aim of this comparison is to demonstrate which system leads to an efficient conversion and supply of energy/exergy within a building system.The analysis of a fossil plant heating system has been done with a typical building simulation software IDA–ICE. A zone model of a building with natural ventilation is considered and heat is being supplied by condensing boiler. The same zone model is applied for other cases of building heating systems where power generation plants are considered as ground and air source heat pumps at different operating conditions. Since there is no inbuilt simulation model for heat pumps in IDA–ICE, different COP curves of the earlier studies of heat pumps are taken into account for the evaluation of the heat pump input and output energy.The outcome of the energy and exergy flow analysis revealed that the ground source heat pump heating system is better than air source heat pump or conventional heating system. The realistic and efficient system in this study “ground source heat pump with condenser inlet temperature 30 °C and varying evaporator inlet temperature” has roughly 25% less demand of absolute primary energy and exergy whereas about 50% high overall primary coefficient of performance and overall primary exergy efficiency than base case (conventional system). The consequence of low absolute energy and exergy demands and high efficiencies lead to a sustainable building heating system.  相似文献   

13.
The prototype of combined vapour compression–absorption refrigeration system was set up, where a gas engine drove directly an open screw compressor in a vapour compression refrigeration chiller and waste heat from the gas engine was used to operate absorption refrigeration cycle. The experimental procedure and results showed that the combined refrigeration system was feasible. The cooling capacity of the prototype reached about 589 kW at the Chinese rated conditions of air conditioning (the inlet and outlet temperatures of chilled water are 12 and 7°C, the inlet and outlet temperatures of cooling water are 30 and 35°C, respectively). Primary energy rate (PER) and comparative primary energy saving were used to evaluate energy utilization efficiency of the combined refrigeration system. The calculated results showed that the PER of the prototype was about 1.81 and the prototype saved more than 25% of primary energy compared to a conventional electrically driven vapour compression refrigeration unit. Error analysis showed that the total error of the combined cooling system measurement was about 4.2% in this work. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Solar heat pump systems for domestic hot water   总被引:3,自引:0,他引:3  
Vapour compression heat pumps can upgrade ambient heat sources to match the desired heating load temperature. They can offer considerable increase in operational energy efficiency compared to current water heating systems. Solar heat pumps collect energy not only from solar radiation but also from the ambient air. They can operate even at night or in totally overcast conditions. Since the evaporator/collector operates at temperatures lower than ambient air temperature it does not need glazing or a selective coating to prevent losses. Currently, however, they are not used much at all in domestic or commercial water heating systems. In this paper comparison is made of a conventional solar hot water system, a conventional air source heat pump hot water system and a solar heat pump water heating system based on various capital city locations in Australia. A summary is given of specific electricity consumption, initial and operating costs, and greenhouse gas generation of the three systems dealt with in this paper. The ultimate choice of unit for a particular location will depend heavily on the solar radiation, climate and the local price paid for electricity to drive or boost the unit chosen.  相似文献   

15.
采用压缩机变频、设置回热器与气液分离器辅助加热等技术途径,设计与构建一种供暖用CO2空气源热泵系统。在此基础上,建立响应面模型对供暖用CO2空气源热泵的压缩机运行频率进行优化,以提高供暖用CO2空气源热泵的低温性能。响应曲面法分析结果表明,低温环境下压缩机合理升频运行可有效提高供暖用CO2空气源热泵制热量,虽压缩比增大,但仍能保证压缩机稳定运行。为提高供暖用CO2空气源热泵的性能系数(COP),在低温环境下压缩机可分段变频运行。当环境温度依次为-5、-10及-15℃时,COP最大时对应的压缩机运行频率分别为55、58及60 Hz。  相似文献   

16.
对于低温余热,VM循环热泵是一种高效节能的利用途径.文中采用有限时间热力学方法,推导了基于牛顿线性导热定律的内可逆VM循环热泵泵热率的表达式.分析表明:采用VM循环热泵用于地板辐射采暖时,随着有限高温热源的入口温度和有限低温热源进口温度的增加,泵热率将增大;而随着有限高温热源的出口温度和有限低温热源出口温度的增加,泵热率将减小.并且低温有限热源温度的变化对泵热率的影响远大于高温有限热源温度的变化.  相似文献   

17.
There are two types of renewable energy widely used in China: air-source heat pump and compact all glass solar vacuum pipe water heating systems. To compare the performance of these supply systems, test systems were installed on two adjacent apartment buildings with the same structure, shape, and material. Both sets of equipment were placed in the same environment for the same 31-day period. The performances and performance parameters of the systems were systematically analyzed. The system energy consumption ratio of the compact all glass solar vacuum pipe water heating system was greater than that of the air-source system on 81% of the days in the study period. However, extension theory analysis showed that the weight coefficients for the performance parameters of the two systems were equivalent over the study period. The grey relational degree between the system performance and the parameters were also calculated. The grey correlation degrees of the compact all glass solar vacuum pipe water heating system's properties with outlet temperature, inlet temperature, environment temperature, solar radiation, and sunshine time were 0.69, 0.71, 0.68, 0.70, and 0.68; and the grey correlation degrees of the air source heat pump water heating system's properties with outlet temperature, inlet temperature, environment temperature, solar radiation, and hours of sunshine were 0.71, 0.73, 0.71, 0.65, and 0.72. Furthermore, multivariate regression equations were used to study the changes of other parameters when one of the single variables changes.  相似文献   

18.
A simulation model for the CO2 heat pump water heater was developed and validated in this study. Component models of the gas cooler, evaporator, compressor, and expansion valve were constructed with careful consideration for the heat transfer performances. To validate the simulation model, experiments were carried out using an actual CO2 heat pump water heater (water heating capacity: 22.3 kW; hot-water temperature: 90 °C). In simulations and experiments, the effects of the inlet water temperature and outside air temperature on the system characteristics were discussed. As a result, the average difference in COP between the simulation results and experimental results is 1.5%.  相似文献   

19.
This study describes a novel approach utilizing waste heat from the exhaust gas for comfort heating of the passenger compartment of a vehicle with an air-cooled engine. In the devised system, a water stream heated by the hot exhaust gas was sent to the passenger compartment of a commercial minibus with an air-cooled engine, and the system was tested under various operating conditions. Variations of the temperatures at several locations inside the vehicle were monitored while ambient temperatures were −3, 0, 5 and 10 °C and there were various numbers of passengers on board. It is found that the system shows a reasonable heating performance while consuming no extra fuel for this purpose, and experimental data is in good agreement with numerical results based on heat loss calculations. Results show that when the ambient temperature is above 0 °C and the engine speed is above 2500 rpm, the system yielded comfortable compartment temperatures. Compared with alternative methods using extra fuel for comfort heating, the proposed system decreases vehicle operating costs and environmental pollution caused by the heating system as well as causing a lower global warming.  相似文献   

20.
太阳能-空气复合热源热泵热水器的性能模拟与分析   总被引:2,自引:0,他引:2  
徐国英  张小松 《太阳能学报》2006,27(11):1148-1154
介绍了一种新型太阳能—空气复合热源热泵热水装置(SAS-HPWH)。该装置通过使用独特设计的螺旋翅片蒸发管的平板型集热/蒸发器,可以在不同的天气情况下切换运行太阳能热源热泵模式、太阳能与空气双热源热泵模式和空气源热泵模式,制取生活热水。论文主要针对自行设计的一台150L的SAS-HPWH,建立系统的数学模型,并以太阳能输入比例为准则研究系统的运行模式与特性。模拟结果显示该热水器在不同天气特征情况下可高效率地制造55℃热水。论文还分析了太阳辐射、环境温度以及压缩机的容量对系统特性的影响,提出使用变频压缩机,根据不同的天气情况调节制冷剂流量,进一步提高系统的整体性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号