共查询到20条相似文献,搜索用时 16 毫秒
1.
A novel technology suitable for centralised and decentralised wastewater treatment has been developed, extensively tested at laboratory-scale, and trialled at a number of sites for populations ranging from 15 to 400 population equivalents (PE). The two-reactor-tank pumped flow biofilm reactor (PFBR) is characterised by: (i) its simple construction; (ii) its ease of operation and maintenance; (iii) low operating costs; (iv) low sludge production; and (v) comprising no moving parts or compressors, other than hydraulic pumps. By operating the system in a sequencing batch biofilm reactor (SBBR) mode, the following treatment can be achieved: 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and total suspended solids (TSS) reduction; nitrification and denitrification. During a 100-day full-scale plant study treating municipal wastewater and operating at 165 PE and 200 PE (Experiments 1 and 2, respectively), maximum average removals of 94% BOD5, 86% TSS and 80% ammonium-nitrogen (NH4-N) were achieved. During the latter part of Experiment 2, effluent concentrations averaged: 14 mg BOD5/l; 32 mg COD(filtered)/l; 14 mg TSS/l; 4.4 mg NH4-N/l; and 4.0 mg NO3-N/l (nitrate-nitrogen). The average energy consumption was 0.46-0.63 kWh/m3(treated) or 1.25-1.76 kWh/kg BOD5 removed. No maintenance was required during these experiments. The PFBR technology offers a low energy, minimal maintenance technology for the treatment of municipal wastewater. 相似文献
2.
Application of biofilm reactors to improve ammonia oxidation in low nitrogen loaded wastewater 总被引:2,自引:0,他引:2
Seca I Torres R Val del Río A Mosquera-Corral A Campos JL Méndez R 《Water science and technology》2011,63(9):1880-1886
An airlift reactor using zeolite particles as carrier material was used for the nitrification of effluents from the aquaculture industry. During the start-up the nitrogen concentration was kept around 100 mg NH4(+)-N/L to develop the nitrifying population. Later it was decreased down to around 3 mg NH4(+)-N/L and the dilution rate was increased up to 4.8 d(-1) in order to simulate the conditions in a an aquaculture waster treatment system. A nitrogen loading rate (NLR) of 535 mg NH(+)-N/m2 d was fully oxidized to nitrate. Higher values of NLRs caused nitrite accumulation. A second biofilm reactor was fed with a synthetic medium containing 50 mg NH4(+)-N/L which simulated the effluents from anaerobic units treating domestic wastewater. A nitrogen loading rate of 400 mg NH4(+)-N/L d was oxidized into nitrate with an efficiency of 60% at a dilution rate of 8 d(-1). Both biofilm systems allowed the development of a nitrifying population to treat the studied types of wastewaters. 相似文献
3.
Martinez-Sosa D Helmreich B Netter T Paris S Bischof F Horn H 《Water science and technology》2011,64(9):1804-1811
An anaerobic submerged membrane bioreactor (AnSMBR) on pilot-scale treating a mixture composed of municipal wastewater and glucose under mesophilic temperature conditions was operated for 206 days. The performance of the AnSMBR was evaluated at different fluxes, biomass concentrations and gas sparging velocities (GSV). GSV was used to control fouling. In addition, the AnSMBR was operated in cycles that included relaxation and backwashing phases. The increase in the transmembrane pressure (fouling rate) was measured under different operational conditions and was used to evaluate the stability of the process. The fouling rate could be controlled for a long period of time at a flux of 7 l m(-2) h(-1) with a GSV of 62 m/h and an average biomass concentration of 14.8 g TSS/L. The membrane was physically cleaned after 156 days of operation. The cleaning efficiency was almost 100% indicating that no irreversible fouling was developed inside the pores of the membrane. The COD removal efficiency was close to 90%. As in anaerobic processes, nutrients were not exposed to degradation and almost no pathogens were found in the effluent, hence the effluent could be used for irrigation in agriculture. 相似文献
4.
Two methods of surface modification of polyethylene biocarriers, chemical oxidation-surface covering with ferric ion (CO-SCFe) and chemical oxidation-surface grafting with gelatin (CO-SGG), were studied for improving the efficiency of wastewater treatment by moving-bed biofilm reactors. The results showed that two surface modifications caused corrosion pits to increase surface roughness, and brought -(C=O)-/-O-C-O- groups and ferric ions to the biocarrier surface, respectively. The positively charged surface increased the hydrophilicity and biological affinity of the biocarrier. The biofilm formation rate was improved by 37.5 and 60% after surface modifications of CO-SCFe and CO-SGG; the concentration of biomass on the biocarriers was improved by 54.8 and 76.1% and the COD removal efficiencies were increased by 10.63 and 8.64%, respectively. Polymerase chain reaction-denaturing gradient gel electrophoresis analysis showed that the microbial populations in the biofilm were almost the same after surface modifications, but the biomass concentration was greatly increased. 相似文献
5.
The release of CH(4) and H(2)S in UASB reactors was evaluated with the aim to quantify the emissions from the liquid surfaces (three-phase separator and settler compartment) and also from the reactor's discharge hydraulic structures. The studies were carried out in two pilot- (360 L) and one demo-scale (14 m(3)) UASB reactors treating domestic wastewater. As expected, the release rates were much higher across the gas/liquid interfaces of the three-phase separators (5.4-9.7 kg CH(4) m(-2) d(-1) and 23.0-35.8 g S m(-2) d(-1)) as compared with the quiescent settler surfaces (11.0-17.8 g CH(4) m(-2) d(-1) and 0.21 to 0.37 g S m(-2) d(-1)). The decrease of dissolved methane and dissolved hydrogen sulfide was very large in the discharging hydraulic structures very close to the reactor (>60 and >80%, respectively), largely due to the loss to the atmosphere, indicating that the concentration of these compounds will probably fall to values close to zero in the near downstream structures. The emission factors due to the release of dissolved methane in the discharge structure amounted to around 0.040 g CH(4) g COD(infl)(-1) and 0.060 g CH(4) g COD(rem)(-1), representing around 60% of the methane collected in the three-phase separator. 相似文献
6.
Giménez JB Carretero L Gatti MN Martí N Borrás L Ribes J Seco A 《Water science and technology》2012,66(3):494-502
The anaerobic treatment of sulphate-rich wastewater causes sulphate reducing bacteria (SRB) and methanogenic archaea (MA) to compete for the available substrate. The outcome is lower methane yield coefficient and, therefore, a reduction in the energy recovery potential of the anaerobic treatment. Moreover, in order to assess the overall chemical oxygen demand (COD) balance, it is necessary to determine how much dissolved CH(4) is lost in the effluent. The aim of this study is to develop a detailed and reliable method for assessing the COD mass balance and, thereby, to establish a more precise methane yield coefficient for anaerobic systems treating sulphate-rich wastewaters. A submerged anaerobic membrane bioreactor (SAMBR) treating sulphate-rich municipal wastewater was operated at 33 °C for an experimental period of 90 d, resulting in a high COD removal (approximately 84%) with a methane-enriched biogas of 54 ± 15% v/v. The novelty of the proposed methodology is to take into account the sulphide oxidation during COD determination, the COD removed only by MA and the dissolved CH(4) lost with the effluent. The obtained biomethanation yield (333 L CH(4) kg(-1) COD(REM MA)) is close to the theoretical value, which confirms the reliability of the proposed method. 相似文献
7.
A four-stage rotating biological contactor (RBC) was designed and operated to treat synthetic wastewater containing 1,000 mg/l chemical oxygen demand (COD) and 112 mg/l NH(4)(+)-N. A mixed culture bacterial biofilm was developed consisting of a heterotrophic bacterium Paracoccus pantotrophus, nitrifiers and other heterotrophs. Applying the peculiar characteristics of P. pantotrophus of simultaneous heterotrophic nitrification and aerobic denitrification, high simultaneous removal of carbon and nitrogen could be achieved in the fully aerobic RBC. The microbial community structure of the RBC biofilm was categorized based on the nitrate reduction, biochemical reactions, gram staining and morphology. The presence of P. pantotrophus within the RBC biofilm was confirmed with an array of biochemical tests. Isolates from the four stages of RBC were grouped into complete denitrifiers, incomplete denitrifiers and non-denitrifiers. This categorization showed a higher relative abundance of P. pantotrophus in the first stage as compared with subsequent stages, in which other nitrifiers and heterotrophs were significantly present. High total nitrogen removal of upto 68% was in conformity with observations made using microbial categorization and biochemical tests. The high relative abundance of P. pantotrophus in the biofilm revealed that it could successfully compete with other heterotrophs and autotrophic nitrifiers in mixed bacterial biomass. 相似文献
8.
Tracking particle size distributions in a moving bed biofilm membrane reactor for treatment of municipal wastewater. 总被引:1,自引:0,他引:1
A study has been conducted to investigate the effect of loading rates on membrane fouling in a moving bed biofilm membrane reactor process for municipal wastewater treatment, especially analysing the fate of submicron colloidal particles and their influence on membrane fouling. Two operating conditions defined as low and high organic loading rates were tested where the development and fate of the particulate material was characterised analysing the particle size distributions throughout the process. Analysis of the membrane performance showed higher fouling rates for the high-rate conditions. The fraction of colloidal submicron particles was higher in the membrane reactor indicating that fouling by these particles was a dominant contribution to membrane fouling. 相似文献
9.
Nitrite accumulation by aeration controlled in sequencing batch reactors treating domestic wastewater. 总被引:19,自引:0,他引:19
Y Z Peng Y Chen C Y Peng M Liu S Y Wang X Q Song Y W Cu 《Water science and technology》2004,50(10):35-43
The feasibility of obtaining and keeping stable nitrite accumulation in Sequencing Batch Reactors (SBRs) treating domestic wastewater is studied. The final product of ammonium oxidation is either reproducible nitrate or nitrite depending on the aeration strategy. With the aerobic-anoxic sequence, two SBRs fed with domestic wastewater are operated in parallel. One SBR (SBR1) is controlled by the aeration control strategy, and the other SBR (SBR2) by alternate aeration control strategy. Based on the on-line indirect measurements of DO and pH, the relationship between pH (or DO) and nitrogen concentration (NH4+-N, NO(3-)-N and NO(2-)-N) is investigated. The result indicates that pH and DO can be used as control parameters for the real-time aeration control strategy to obtain nitritation in SBR treating domestic wastewater. The result of SBR1 indicates that long-term stable nitritation is possible at 32+/-1 degrees C. The result of SBR2 indicates that the aeration control strategy is necessary for nitritation during the acclimation period, because the nitrite accumulation disappears when the aeration is extended. 相似文献
10.
11.
Polyhydroxyalkanoates (PHAs) accumulating bacteria were isolated from activated sludge samples collected from municipal wastewater treatment plants in Quebec. Twelve bacterial strains were screened for PHA production with acetate as sole carbon source. PHA granules exhibited a strong orange fluorescence when stained with Nile blue A observed under microscope (X100x). PHA was also analyzed by Gas Chromatography Linked to Mass Spectroscopy (GCMS) to further confirm the presence and the concentration of PHA. To compare the abilities of these PHA accumulating bacterial strains, synthetic media with acetate as carbon source was prepared to accumulate PHA in 500 mL Erlenmeyer flask containing 150 of the medium. These flasks were then inoculated with the isolated bacterial strains, incubated at 25 degrees C for 48 hours in a rotary shaker at 220 rpm. The results showed that the bacterial strains isolated from sludge possess different abilities for accumulating PHA. The maximum PHA content of 27.50% was obtained by strain PHA-SB3. The PHB/PHV ratio of the copolymer produced in the study changed in accordance with operating time and strains. 相似文献
12.
Sequencing batch membrane bioreactors can be a good option in up-grading small municipal plant and for industrial applications, maintaining some of the advantages of both original technologies (effluent quality improvement, flexibility and simplicity of realization, operation and control). In this study, the effects of volumetric exchange ratio (VER) and aeration/filtration strategy have been evaluated. Moreover, with the adoption of cycles shorter than 8 h, the opportunity of further simplification of the membrane operation has been tested by choosing a continuous filtration mode instead of the usual short cycle of permeation/relaxation. Two lab-scales MBR equipped with Zenon hollow fiber modules were fed on real primary effluent. For all tests, hydraulic retention time of 10 h and sludge retention time of 60 days have been adopted. Different cycles have been investigated, lasting between 1 and 8 h and all comprising an anoxic phase to allow for denitrification. Operation at low VER resulted in better effluent quality with no limitations to the denitrification phase. For VER >33% a pre-aeration step was required before effluent withdrawal for optimal ammonium removal. Moreover, VER appeared to have limited negative effect on sludge concentration and yield, while the membrane cleaning frequency slightly increased for increasing VER. 相似文献
13.
Quantification of dissolved methane in UASB reactors treating domestic wastewater under different operating conditions 总被引:1,自引:0,他引:1
This paper aimed at measuring the concentration of methane dissolved in effluents from different UASB reactors (pilot-, demo- and full-scale) treating domestic wastewater, in order to calculate the degree of saturation of such greenhouse gas and evaluate the losses of energetic potential in such systems. The results showed that methane saturation degrees, calculated according to Henry's law, varied from ~1.4 to 1.7 in the different reactors, indicating that methane was oversaturated in the liquid phase. The overall results indicated that the losses of dissolved methane in the anaerobic effluents were considerably high, varying from 36 to 41% of total methane generated in the reactor. These results show that there is considerable uncontrolled loss of methane in anaerobic wastewater treatment plants, implying the need of research on technologies aimed at recovering such energetic greenhouse gas. 相似文献
14.
可持续发展的新型、高效城市污水处理技术探讨 总被引:10,自引:0,他引:10
对国内外城市污水处理工艺的发展进行了回顾,提出我国目前所采用的以氧化沟技术和SBR反应器为主体的城市污水处理技术是西方发达国家在一定历史时期和技术发展水平下的产物,与西方国家的自然条件和经济发展水平是相适应的。从可持续发展方面进行考察认为这些技术(特别是延时曝气)是不适合我国国情的高物质消耗和高能耗的污水处理技术。同时,提出我国城市污水可持续发展的处理技术的关键是要在新工艺开发方面进行不断的探索,同时解决污泥处理技术方面的问题。并就工艺创新、技术创新和体制创新对城市污水处理厂降低投资和运行管理费用的作用进行了分析。对沉淀和分离性能改进,生物的量和质的提高以及充氧性能的改善是高效反应器发展的要点。 相似文献
15.
This paper presents the purification performance of 20 wastewater treatment plants with vertical reed bed filters (Macrophyltres), built between 1998 and 2003 by SAS Voisin, for communities of between 150 and 1400 PE. The first stage vertical reed bed (directly fed with raw wastewater by intermittent feeding) achieved high removal of SS, BOD and COD (mean respectively 96%, 98%, 92%). The second stage permitted compliance easily with effluent standards (SS < 15 mg/l, BOD < 15 mg/l, COD < 90 mg/l and mean TKN < 10 mg/l). Performance was not significantly influenced by variations of organic and hydraulic load, nor by seasonal variations. Rigorous operation and maintenance were required to obtain optimal performances. Another application of vertical reed beds is the treatment of septage (sludge from individual septic tanks). The results obtained on two sites operating for 2 and 3 years are presented. The first site achieved complete treatment of septage (solid and liquid fraction), the second permitted a pre-treatment for co-treatment of percolate with wastewater. 相似文献
16.
EPS are supposed to be among the causes of membrane fouling in membrane bioreactors (MBR). In this work they are measured as total proteins and total polysaccharides. Theoretical and empirical considerations of biomass membrane filtration lead to the conclusion that EPS in the water phase is decisive for the filterability of activated sludge. In this study therefore different ways of separating the water phase from the biomass are investigated, where a simple filtration over a paper filter turned out to be sufficient. Subsequently, a simple batch test set up was used to investigate the influence of substrate conditions on the amount of EPS in the water phase. Dilution of the biomass does not result in changes. Dilution together with substrate addition leads to an increase both in proteins and polysaccharides. Replacement of the water phase leads to no significant changes in protein concentration, but polysaccharide concentration may vary considerably. This phenomenon is more pronounced after replacement of the water phase and substrate addition. 相似文献
17.
A study has been carried out to define the effect of drastic temperature changes on the performance of lab-scale hollow-fibre MBR in treating municipal wastewater at a flux of 10 L m(-2) h(-1) (LMH). The objectives of the study were to estimate the activated sludge properties, the removal efficiencies of COD and NH(3)-N and the membrane fouling tendency under critical conditions of drastic temperature changes (23, 33, 42 & 33 °C) and MLSS concentration ranged between 6,382 and 8,680 mg/L. The study exhibited that the biomass reduction, the low sludge settleability and the supernatant turbidity were results of temperature increase. The temperature increase led to increase in SMP carbohydrate and protein, and to decrease in EPS carbohydrate and protein. The BRE of COD dropped from 80% at 23 °C to 47% at 42 °C, while the FRE was relatively constant at about 90%. Both removal efficiencies of NH(3)-N trended from about 100% at 33 °C to less than 50% at 42 °C. TMP and BWP ascended critically with temperature increase up to 336 and 304 mbar respectively by the end of the experiment. The values of suspended solids (SS) and the turbidity in the final effluent were negligible. The DO in the mixed liquor was varying with temperature change, while the pH was within the range of 6.7-8.3. 相似文献
18.
A/O工艺处理含海水污水的中试研究 总被引:4,自引:0,他引:4
采用A/O工艺对含海水城市污水生物处理进行了中试研究。试验结果表明:在常温条件下,进水CODCr为300-500 mg/L,氨氮为40-70 mg/L,当污水中海水比例小于30%时(污水盐度为10.5 g/L),盐度对有机物及氨氮去除率均无影响;当污水中海水比例大于50%(污水盐度为17.5 g/L)时,有机物去除率下降而氨氮去除率无变化;当污水中海水比例大于70%(污水盐度为24.5g/L)时,有机物及氨氮去除率均明显下降。说明污水中盐度对氨氮去除率的影响小于对有机物去除率的影响,污水中盐度对硝化过程自养菌的影响要小于对有机物降解过程异养菌的影响。 相似文献
19.
Chromatographic characterization of dissolved organics in effluents from two anaerobic reactors treating synthetic wastewater. 总被引:1,自引:0,他引:1
This paper presents results on the quantification and chromatographic characterization of soluble microbial products (SMP) accumulated in two laboratory-scale reactors: a submerged anaerobic membrane reactor (SAMBR or MBR), and an anaerobic CSTR. The results obtained under steady-state conditions show that 2.1% of the substrate was channelled into the production of SMP in the CSTR, whilst in the SAMBR this was estimated to be 25%. Chromatographic characterization showed that more hydrophobic and high MW organics that absorb at 254 nm were detected in the SAMBR supernatant than in the CSTR. A comparison of chromatograms suggest that the release of extracellular polymers (ECP) and cell lysis may be important sources of SMP in the SAMBR. Electrophoresis results confirmed that there was more soluble protein inside the SAMBR, and showed that the release of ECP by shear or hydrolysis seemed to have contributed to the production of protein-like SMP in both systems. 相似文献
20.
Dutch analysis for P-recovery from municipal wastewater. 总被引:4,自引:0,他引:4
There is a considerable practical interest in phosphorus recovery from water authorities, elementary P-industry, fertilizer industry and regulators in a number of countries. Due to a handful of full-scale plants worldwide, P-recovery can be seen as technically feasible. However, the economic feasibility of P-recovery from sewage can still be judged as dubious. The most important reason for this is that the prices of the techniques (in euro/tonne P) are much higher compared to the prices of phosphate rock. In this paper an analysis is given to recover phosphate from municipal wastewater for the elementary P-industry Thermphos International B.V. and the fertiliser industry Amsterdam Fertilizers B.V. in The Netherlands. Several scenarios are evaluated and the end products of these scenarios are compared to the quality required by both industries. From a Dutch study it became clear that all end products from the final sludge treatment do not provide a good source of secondary phosphate. As a consequence of this, the most preferred possibility for P-recovery is to extract phosphate before sludge goes to the final sludge treatment. Different scenarios can be selected based on the position of P-recovery in the WWTP configuration, the type of P-recovery product, and the precipitation technique. Local conditions will determine which scenario is the most expedient. Because it is more realistic to judge a practical situation instead of theoretical estimations based on literature, some local situations have to be assessed in sufficient detail to gain more feeling for the expenses and possible savings of P-recovery. One important actor that should be involved in the process management around P-recovery, is the national government. Especially, the Government have the responsibility for sustainable development and should have attention for some stimulation of P-recovery in The Netherlands. Water authorities and the P- and fertilizer industry made already some good steps. 相似文献